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1. Executive Summary 

This report aims to assess and determine the best ways to represent short-term details 
in longer-term models such that the computational tractability of these long-term 
models is maintained while the accuracy of the results is not compromised. First, we 
analyze different options of representing short-term details (e.g., such as varying 
Renewable Energy (RE) production) in long-term models while aiming for both 
computational tractability of models and accuracy of results. Second, we also explore 
the different ways to incorporate both short-term (e.g., uncertainty due to intermittent 
renewable production) and long-term uncertainties (e.g., RE policies, fuel prices, 
demand evolution) in long-term models and evaluate them depending on their 
suitability for long-term transmission and generation expansion models. The 
corresponding sections of this report are described below: 

• Adequate representation of time horizon in long-term models: The 
representation of the time horizon in long-term models is an issue: there exist 
approaches that represent each hour of the time horizon individually; and others 
that approximate the hourly data by a load duration curve or system states. The 
first approach is not tractable if the modelling time horizon goes over several 
years or decades, which is the case in the expansion models proposed in this 
project. However, representative weeks of the year could be considered to 
achieve computational tractability. In Section 2 such an approach is compared to 
standard load duration curve models, in order to determine which 
representation of time is best suited for long-term investment models. 

• Integration of short- and long-term uncertainties in long-term models: In the 
electricity sector there exist different types of uncertainties: short-term 
uncertainties that mostly affect operations, such as uncertain output of RE 
sources; and long-term uncertainties such as the evolution of fuel prices over 
time, policy uncertainty, or the evolution of electricity demand. Both types of 
uncertainties can have an impact on optimal investment decisions, both in 
transmission and generation expansion. Section 3 studies the best way to include 
these types of uncertainty in the models proposed. Different options are 
explored in order to guarantee that the proposed models can still be solved from 
a numerical point of view, but that they also adequately capture the 
uncertainties at hand. 
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2. Adequate representation of time horizon in long-term 
models 

The representation of the time horizon in long-term models is an issue: there exist 
approaches that represent each hour of the time horizon individually; and others that 
approximate the hourly data by a load duration curve or system states. In this section 
we show the main results obtained from the comparison between standard load 
duration curve and representative periods (e.g., days or weeks) approaches, in order to 
determine which representation of time is best suited for long-term investment models. 
As part of the STEXEM project, these results have been published in Reichenberg et al. 
[1] and Tejada-Arango et al. [2] and are summarized in the following sections. 

2.1 Policy implications of downscaling the time dimension in power 
system planning models to represent variability in renewable output 

In most industrialized countries, concerns about climate change have prompted 
policymakers to mandate targets for increasing the share of variable renewable energy 
sources (VRES) such as solar and wind power [3]. In turn, policy-enabling models are 
relied upon to delineate the design of and transition into a future power system with 
less CO2 emissions. For example, ReEDS [4] is a linear programming model for the U.S. 
that uses a demand-based integral method, i.e., representation of time by averages 
based only on demand fluctuations, with 17 time periods per year to capture variability. 
By contrast, the POWER model for the U.S. uses extreme days comprising variability in 
VRES output as well as demand with hourly resolution to study both flexibility [5] and 
storage [6]. LIMES-EU uses clustering techniques to select representative days in order 
to assess a sustainable transition for Europe [7]. 

Such power system planning models are computationally demanding due to their 
technological and/or spatial detail. They are, therefore, restricted as to their 
representation of time, and they, thus, typically reduce the number of time steps to 10-
20, e.g., 17 annual time steps in the integral model ReEDS and 4 representative days 
each in LIMES-EU and POWER. When these models originated, the main variable 
quantity was the demand, which fluctuates rather regularly depending on the time of 
day, the day of the week, and the season. Thus, variation may be adequately 
represented using 10-time steps. Although such a time representation does not capture 
variability on the generation side, viz., for solar and wind power, as long as the solar and 
wind contribution is marginal, the lack of linkage to variations in solar and wind output 
does not gravely impact model results. However, as the levelized cost of solar and wind 
generation has decreased rapidly to reach near parity with that of gas-fired plants [8], 
VRES may potentially constitute a large part of the generation in a least-cost system. 
Consequently, it is desirable for policy-enabling planning models to represent variability 
in solar and wind power output. If a time representation based on demand variation 
were used in a scenario with low costs of variable generation, then the variations on the 
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generation side will be underestimated, thereby leading to a gross overestimation of the 
optimal VRES capacity [9]. Even models with more detailed temporal representation, 
e.g., using 8760 annual time steps, face a tradeoff in terms of less spatial resolution and 
more computational effort [10]. Meanwhile, models with more engineering details, e.g., 
EnergyPLAN, calculate resulting power system operations once VRES capacities are 
known based on samples from statistical distributions. Yet, as indicated in the 
documentation1, EnergyPLAN “optimises the operation of a given energy system on the 
basis of inputs and outputs defined by the user.” Unlike EnergyPLAN, the capacities are 
endogenously determined by the class of power system models that are studied in the 
current paper. 

Recently, several articles have been produced highlighting the importance of a 
representation of time that is apt for power systems that can be expected to incorporate 
substantial levels of VRES as summarized by Pfenninger et al. [11]. In such studies, one 
may differentiate between two main families of methods to represent the variability in 
production introduced by VRES. One family of methods classifies the time into “typical” 
hours in terms of wind output and demand and then averages quantities within these 
classes. This family of time-reduction methods will be referred to as integral following 
Nahmmacher et al. [7]. This approach was developed for one-node models by Wogrin 
et al. [12] with Lehtveer et al. [13] implementing an application to a global model. 
Wogrin et al. [14] further develop the approach to include storage using a transition 
matrix to relate the time slices to each other. The second type of method is to select so-
called representative days, i.e., to choose certain days and assign unequal weights to 
them in order to replicate variation during the year with fewer time steps. Nahmmacher 
et al. [7] develop a method to select representative days based on looking at each day's 
output of variable quantities (wind, solar, demand) as a vector. Frew and Jacobson [6] 
use a method where extreme days, e.g., the day with the highest demand and the lowest 
wind production, are included as well as random days. Merrick [15] uses distance 
measures to determine how many representative days or weeks are sufficient to capture 
the effects of variability. 

In terms of the number of time steps necessary to represent variability adequately, 
Wogrin et al. [12] and Wogrin et al. [14] evaluate the number of time slices needed to 
come within a certain range of the capacities obtained using a model with hourly 
resolution for a full year. They find that around 100 time slices plus the transition matrix 
to represent storage are needed for their unit-commitment model. Furthermore, they 
find that the CPU time is reduced to about a third compared to the hourly model of 
8760-time steps. Nahmmacher et al. [7] implement their LIMES-EU model with 
successively more representative days and find that 20-30 representative days (which 
amounts to 160-240 time steps) are necessary to converge to the correct system 
capacity mix. Frew and Jacobson [6] find that the system cost in their POWER model 

                                                      
1 www.EnergyPLAN.eu  

http://www.energyplan.eu/
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differs by less than 10% for 14 representative days as compared to a “full” 
implementation. 

Besides the aforementioned power system planning models, there are others that either 
account for the interaction with other parts of the energy system or have a more 
detailed representation of strategic behavior. For example, inadequate representation 
of variability in power system modelling will have consequences for a holistic approach 
to smart energy systems [16]. Likewise, the coupling of the power system with district 
heating in terms of integrating VRES is important for the Nordic region [17]. More 
generally, electricity and gas networks may also require further joint analysis [18]. 
Indeed, more adoption of VRES requires countervailing flexibility, which could be 
provided by heat storage, combined heat and power, and gas-fired power plants. Thus, 
additional VRES capacity could also affect the leverage of flexible generators in exerting 
market power, which would require a game-theoretic framework for analysis [19]. 

Focusing on power system planning models, although the performance of integral and 
representative days methods has been evaluated individually against benchmark model 
results with a high time resolution, e.g., Frew and Jacobson [6]; Nahmmacher et al. [7]; 
Wogrin et al. [12]; Wogrin et al. [14]; and Merrick [15]; the two approaches have not 
been compared with each other in the same model apart from an assessment with an 
equal number of time periods in Poncelet et al. [9]. In this paper, the performances of 
the two families of methods (integral and representative days) are compared in a cost-
minimizing power system planning model and evaluated with respect to how well they 
predict the capacity mix and the system cost. 

The research questions addressed in this paper are: 

• Which method comes closer to predicting the benchmark model3 VRES capacity 
(the main performance metric in this paper) for a given number (10-20) of time 
steps? 

• Which method is more accurate if a larger number of time steps (200) is 
tractable? 

• What, if any, is the impact of using a clustering method rather than arbitrarily 
picked days? 

From a policy perspective, answers to these questions are essential in assessing the 
impact of proposed environmental regulations on the power system. Since a 
conventional load-slicing approach in large-scale power system models leads to 
overestimates of VRES installed capacity, it would provide a biased basis on which to 
establish future energy policy. Hence, by directly comparing two enhanced time-
resolution methods, this paper demonstrates how models should represent temporal 
dependence between VRES and demand in order to provide a credible basis for 
policymaking. 
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2.1.1 Methods 

The two time-reduction methods (integral and representative days) are tested using 
data for several European regions: one each in Germany, Denmark, Spain, France, and 
Ireland. The regions are chosen to represent a variety in terms of VRES and demand 
conditions. Demand and weather data are the input to a power system planning model. 
The results of the time-reduction methods are compared with those from a fully time 
resolved linear optimization model using 2920-time steps (from now on called the 
benchmark model). The measure of accuracy for the two approaches and the main 
performance metric used in this paper is their ability to predict the optimal capacity 
investment for the different technologies, especially VRES, using results from the 
benchmark model as comparison. 

The two methods are described in steps and illustrated with an example. Several 
preparation methods have been proposed in order to group data into representative 
periods, e.g., via either hierarchical (as in Nahmmacher et al. [7] and Merrick [15] or k-
means clustering (as in Frew and Jacobson [6] and Wogrin et al. [12]. The latter 
technique partitions n demand and VRES pairs into k clusters via an iterative procedure 
that minimizes the sum of weighted distances between each pair and cluster centroid. 
By contrast, hierarchical clustering starts with clusters of size one data point each and 
sequentially merges nearby clusters.4 Since k-means clustering is used here, which 
depends on initial points, 200 replicates are performed, and the closest match is picked. 
The data are normalized so that solar, wind, and demand observations all attain values 
between 0 and 1. 

2.1.1.1Representative days 

Representative days are selected as described in Nahmmacher et al. [7] 5 except for the 
clustering method: in Nahmmacher et al. [7] hierarchical clustering is used, while k-
means clustering is used here. The procedure is illustrated in Fig. 1 and is as follows: 

• Partition the data into vectors each consisting of the output of each variable 
quantity (in this case, solar, wind, and demand) for one day. 

• Cluster the vectors into the chosen number of clusters using k-means clustering. 

• Pick the day(s) that are closest to the centroids as representative. The number 
of days in a cluster is used as the weight for that representative day. 

• Run the model with the time steps pertaining to these days. Since there are n 
representative days with time resolution of three hours per step, i.e., 8n time 
steps are selected, this amounts to: 
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• Partition the data into 365 vectors, each with 24 elements (elements 1:8 are the 
wind output, elements 9:16 are the solar output, elements 17:24 are the 
demand). 

• Cluster the vectors into n clusters using k-means clustering. 

• Pick the n days that are closest to the centroids as representative. The number 
of days in a cluster is used as the weight for that representative day. An example 
of a time series resulting from this procedure can be found in Fig. 2. 

• Run the model with the 8n time steps pertaining to these days. 

 
Fig. 1 Representative days to capture the variation during the entire year 
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Fig. 2 Representative days - Time series produced with 16-time steps based on k-means clustering 

2.1.1.2Integral 

The principle behind integral methods is to identify states. States may be described as 
“typical” situations, e.g., when the wind power output is low, and the demand is high. 
This is illustrated in Fig. 3, which shows an example where states are based on wind 
power output and demand only. The method to identify states in this paper follows 
Wogrin et al. [12]: 

• Partition the data into vectors each consisting of the outputs of variable 
quantities for one-time step. Each such vector is called a state as in Wogrin et al. 
[12] and Wogrin et al. [14]. 

• Cluster the vectors into the chosen number of states using k-means clustering. 

• Take the centroid of each cluster output for that state. The number of elements 
in a cluster is used as the weight for that state in the modelling. 

• Run the model using the states and weights. In this case, this amounts to: 

• Partition the data into vectors with three elements each: solar, wind, and 
demand for one-time step. There are 2920 such vectors. Each such vector is a 
state. 

• Cluster the vectors into n0 clusters using k-means clustering. 
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• Take the centroid of each cluster, i.e., a triplet with values for solar, wind, and 
demand, and use it as the solar output/wind output/demand for that time step. 
The number of elements in a cluster is used as the weight for that time step. An 
example of a time series resulting from this procedure can be found in Fig. 4. 

• Run the model using the time steps and weights. 

 
Fig. 3 Integral approach based on partitioning variable quantities by their means (schematic based on 

only wind power output and demand) 

 
Fig. 4 Integral - Time series produced with 16-time steps based on k-means clustering 

The number of states, n0, is between 8 and 200, in steps of 8 (Table 1). As a basis for 
comparison in terms of predicting the VRES capacity and system cost accurately, a 
demand-based integral method is adopted, similar to that in Short et al. [20] and 
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Odenberger et al. [21]; for example. The procedure to find the demand-based states is 
exactly like the integral method (above), but the states are based only on demand. 
Consequently, solar and wind conditions do not influence the selection of time steps 
that define a state in such a conventional representation of time. 

Table 1: Attributes of data used in this analysis. 

Time resolution 3-hourly 

Time steps per year 2920 

Time steps per day 8 

Varying quantities 3 (demand, wind, solar) 

Number of time steps in modelling 8-200 (equivalent of 1-25 days) 

2.1.1.3Optimisation model 

The basis for comparing the representative days and the integral time-resolution 
methods is a one-node cost-minimization linear programming model. Demand is 
assumed to be perfectly price inelastic but varying in time. The model's decision 
variables are (i) investment capacities in a number of technologies (set I) and (ii) their 
production over representative time periods in order to minimize annualized 
investment and operating costs for a target year. The only constraints are that (i) total 
generation should meet demand at every time step and (ii) output is limited by available 
capacity. For the VRES technologies, operating costs are zero, but availability depends 
on weather-based factors. The model is run with different weights on the time steps 
corresponding to the cluster sizes. For the benchmark model, all 2920-time steps have 
the same weight. 

2.1.2 Numerical examples 

2.1.2.1Data 

The data consist of time series for demand, solar, and wind for five regions: one each in 
Denmark, Germany, France, and Spain, as well as the entire island of Ireland. The 
investment and operating costs for energy technologies are listed in Table 2. The 
demand data are available on an hourly basis from Eurostat2. Since the weather data 
are available only for every three hours, the demand data points are taken for the same 
hours, i.e., 2920-time steps for one year. The demand data are used as they are in the 

                                                      
2 http://ec.europa.eu/eurostat/statistics-explained/index.php/Main_Page  

http://ec.europa.eu/eurostat/statistics-explained/index.php/Main_Page
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optimization step. However, for the preparation step (integral or representative days 
method), the demand data are normalized so that the maximum demand event is given 
a value of 1. The wind and solar data input is based on weather data from the European 
Centre for Medium-Range Weather Forecasts (ECMWF), processed through a turbine 
function and a function to mimic the output of solar PV (see Ref. [22] for a more 
thorough description). Solar and wind output also attain values between 0 and 1, but 1 
is equivalent to the nameplate capacity. Sample code and a generic dataset for executing 
the procedure are available as an electronic companion to this paper. 

In addition to the investment options of solar and wind technologies, there are four 
thermal technology options in the set I, defined by their annualized investment costs 
and operating costs based on technology data forecasts from Energy Information 
Administration [8] and Fraunhofer Institute for Solar Energy Systems [23] to allow for 
sufficient VRES and dispatchable energy capacity to permit an assessment of the time-
resolution methods (Table 2). The interest rate is set to 5%/annum, and investment 
costs are annualized over the technical lifetimes of the plants. 

Table 2: Technology attributes. 

Technology Investment Cost 
[k€/MW] 

Annual Fixed 
Cost [k€/MW] Lifetime [a] Operating Cost 

[€/MWh] 

Wind 700 0 25 0 

Solar 480 0 25 0 

Nuclear 2500 43 60 18 

Coal 1700 43 40 45 

Gas 1000 40 40 52 

Backstop 100 0 40 120 

2.1.2.2Results 

The approach of Nahmmacher et al. [7] is followed here in using the VRES capacity and 
the system cost (the value of the objective function) to measure accuracy. The additional 
measure of the generation per technology is used by Wogrin et al. [12]; Frew and 
Jacobson [6]; and Merrick [15]. For application to investment models, however, the 
capacity mix is vital, while the dispatch is not since, given the correct capacities, the 
dispatch can be determined using a dispatch model in a post-investment analysis. Out 
of the technologies, the VRES capacity sets the scene for the remaining generation, and, 
therefore, the exposition of the results is concentrated mainly on these. 

Fig. 5 shows the deviation of the integral demand-based, integral, and representative 
days approaches from the VRES capacity predicted, which is the main performance 
metric used here, by the benchmark model for all regions. The benchmark results are 



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          11 

 

those from a model run with an entire year of data 2920-time steps. The vertical axis 
measures the VRES capacity relative to that predicted by the benchmark model, and 
each dot represents one of the five regions. 

In order to establish the necessity of replacing the use of demand-based states in models 
with a different method for time representation, Fig. 5 shows the performance of the 
demand-based slicing in gray. It is clear that, regardless of how many time steps in the 
modelling (¼states) that are allowed, this method overestimates the optimal amount of 
VRES capacity by a factor of 2-4. Thus, neglecting VRES variation in time slicing and 
relying solely on the demand to downscale the time dimension will lead to significant 
inaccuracies from the perspective of capturing VRES capacity. 

If the time representation is to be used in a model that allows for only 16-40 time steps, 
then the integral method gives a much better prediction of the VRES capacity: the 
regions with maximum discrepancy are 5-15% off the correct capacity compared to the 
representative days method, where the maximum discrepancy is 40-50% off the correct 
capacity (Fig. 5 and Fig. 6). The integral approach is remarkably stable and within a 10% 
error of the benchmark VRES capacity for all runs with more than 32-time steps. The 
representative days approach may miscalculate the optimal VRES capacity by 50% for 
less than 40-time steps. It is rare that the representative days approach miscalculates 
VRES capacity by more than 20% for a number of time steps of 160 (20 days) or more 
(Fig. 5). This is in line with the results for the test with the more detailed models in 
references Nahmmacher et al. [7] and Frew and Jacobsen [6]. 

The system cost (Fig. 7) shows less discrepancy between the results with fewer time 
steps and the benchmark model results compared to the VRES capacity (Fig. 5). 
However, the system cost output from an investment model hides discrepancy in 
capacity mix that would have a greater impact on cost had they been evaluated in, e.g., 
a unit-commitment model. The system cost is underestimated for low numbers of time 
steps, especially for the case of integral demand-based slicing (Fig. 7), while the VRES 
capacity is overestimated (Fig. 5). When the variability of VRES to a large extent is 
averaged out (such as is the case for demand-based slicing), the load-covering capacity 
of VRES is overestimated, and, thus, the optimal capacity of VRES is also overestimated. 
This leads to an underestimate of system cost. Hence, the demand-based slicing 
approach also underperforms on the basis of the system cost as a metric. 

Both methods (integral and representative days) also predict the thermal capacities 
fairly well. However, one exception is backstop capacity, the need for which depends 
heavily on extreme events (high demand, low wind, low solar) (Fig. 9). Although results 
for only the Danish region are shown, similar trends are observed for other regions, viz., 
an underestimate of peak capacity by both reduction methods. 
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Fig. 5 Performance of time-reduction methods in 
predicting the VRES capacity. 

Fig. 6 Performance of time-reduction methods in 
predicting the VRES capacity (zoom-in of Fig. 5). 

  

Fig. 7 Performance of time-reduction methods in 
predicting the system cost. 

Fig. 8 Performance of randomly selected days in 
predicting the system cost. 

 

Fig. 9 Installed capacities for the case with 32-time steps (Danish region). 

As a corollary to the results on the two methods, results are presented on the 
importance of the preparation method. Fig. 8 shows the alternative of picking random 
days instead of performing the preparation step of finding the representative days. As a 
result, the random-days method may be off by 50% of the VRES capacity predicted by 
the benchmark model for as many as 168-time steps (21 days).9 Overall, the variance of 
the VRES capacity is much higher for the random days than for representative days 
picked using k-means clustering. A similar result is obtained for the integral methods 
when intervals for finding states are arbitrarily chosen instead of using the clustering 
method. 
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2.1.3 Discussion 

Two methods (integral and representative days) to downscale the time dimension in 
power system planning models are compared in order to represent better the cases with 
a high share of variable generation. The comparison is performed in a simple model, 
where benchmark results obtained with the full-time resolution may be used as a 
comparison. The number of time steps to predict VRES capacity within a 10% error 
margin is approximately 30 for the integral method and approximately 160 for the 
representative days method. This result may inform developers in choosing an 
appropriate time representation method for their model and design the model so that 
it is tractable with the number of time steps needed to come within an acceptable error 
margin. 

Of the two methods tested here, the integral approach has a smaller standard deviation 
of the resulting VRES capacity for different runs of the heuristic to pick the 
states/representative days. Even for a low number of time steps, e.g., 32, the integral 
method with k-means clustering is within 10% accuracy in predicting the VRES capacity. 
Wogrin et al. [14] use a more complex (unit-commitment) model and find that around 
102 time slices are needed. The representative days approach in this work needs 160-
200 time steps to reach a 10% accuracy level. The value for the representative days 
approach in the present study is similar to the results in Nahmmacher et al. [7] and Frew 
and Jacobson [6]. Frew and Jacobson [6] use another preparation method to find the 
representative days, which leads to an overestimate of the system cost for around 102 
time steps, rather than, as here and in Nahmmacher et al. [7]; an underestimate of the 
system cost. Merrick [15] uses more stringent measures of accuracy: since he requires 
several measures (e.g., annual generation) to be within a range of the correct value than 
just the VRES capacity, his estimate of the number of necessary time steps is instead on 
the order of 103. Thus, it seems likely that at least 160-time steps are necessary to 
represent variability with the representative days approach. Due to intractability, many 
power systems planning models cannot use as many as 160-time steps, and, thus, in 
order to assure a reliable result, they would need to be redesigned, in effect reducing 
the technical and/or spatial complexity of the models. 

The model that is used for comparing the two time-reduction methods here is a (i) 
simple (ii) one-node model that (iii) lacks storage options. These three limitations entail 
that the present experiment can cover only representation of variability and not all 
variation management strategies. Variation management includes (i) flexibility of the 
surrounding (mainly thermal) generation system, (ii) flexibility of demand (such as 
demand-side management, DSM), (iii) curtailment of VRES electricity, (iv) variability 
smoothing by transmission investment and trade, and (v) storage. These measures 
become more important as the penetration level of variables increases, and, thus, for 
many applications, these are, indeed, important to incorporate into models and the 
method to downscale time. The testing framework is necessarily simplified by using only 
the technologies that both types of representation methods can incorporate. For 
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example, the representative days method can handle trade and short-term storage but 
not overnight storage or hydropower, whereas the integral method has traditionally not 
been able to handle spatial aspects of a power network. Hence, only by boiling the 
testing framework down to the current one can one meaningfully compare the two 
methods' performance in predicting VRES capacity shares directly. 

Of the two methods tested here, the representative days method can incorporate trade 
since it may be employed for network models as is done in Frew et al. [20]; Nahmmacher 
et al. [7]; and Haller et al. [24]. The representative days method can also represent 
storage and DSM that takes place within the day-night, which may be a sufficiently good 
representation for storage that is used mainly for solar power. However, it can neither 
handle storage over longer periods nor represent the dynamics of hydropower, which 
may be viewed as a type of storage. The integral method, on the other hand, has 
traditionally not been employed in a network model with many nodes. Only recently has 
the integral method been adapted to handle storage operations (but not investment) in 
a congested network [25]. Thus, it needs further enhancement to tackle investment in 
the potentially important variation management tool of transmission investment and 
trade. Both approaches tested here can be expanded to include more variation 
management strategies. The integral method may be complemented with a transition 
matrix, as shown in Wogrin et al. [14]; in order to cover cycling and storage. The 
representative days approach may be expanded to choose representative weeks instead 
of days, which would a priori be more suited to represent long-term storage, cycling, 
and hydropower. Both expansions make models larger, thereby increasing computation 
time, which may render problem instances intractable. A study that extends the test 
ground for the two families of methods to one that can incorporate all variation 
management strategies would be beneficial to both the modelling community and 
policymakers. 

The results comparing random days with those selected using one of the two methods 
show that the preparation step (in this case k-means clustering) is important and 
impacts the tendency of the model results with the reduced time dimension to 
underestimate or over-estimate results. In this paper, random picking of days provides 
little certainty about the accuracy of results: while the k-means clustering method for 
picking and weighing representative days produces an error margin of 20% or less for 
greater than 50-time steps, the random picking of days is unstable for all number of time 
steps tested. 

2.1.4 Conclusions and policy implications 

Given the importance of VRES capacity investment to most industrialized countries' 
energy policies, power system modelling that provides a credible basis for devising 
appropriate regulation is desirable. Thus, large-scale models that rely only on demand-
based time slicing are inadequate for assessing power systems with a substantial share 
of VRES capacity. Indeed, neglecting the dependence between demand and VRES output 
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could bias a model's predicted VRES capacity share, thereby undermining the basis for 
policy analysis. In this paper, two time-reduction methods for representing VRES output 
are compared in order to determine their suitability for inclusion in policy-enabling 
power system planning models. 

It is shown that the integral method for time reduction is well suited to represent 
variability in a one-node model. To predict VRES capacity well, it is enough to use 30-40 
time steps if the time steps are picked using the k-means clustering method described 
in Nahmmacher et al. [7] and Wogrin et al. [12]. The representative days method needs 
160e200 time steps in order to predict VRES capacity with an accuracy of 10%, which is 
the paper's main performance metric. The conclusions are that: 

• For one-node models, at least when the penetration level is below the level 
where competition between variation management strategies may become 
important, the integral method seems to be suitable. The model then needs to 
be designed so that it be convenient to run with 30-time steps. This approach 
may be adopted in integrated assessment models (IAMs), for example. 

• For network models, the representative days approach, with at least 20 such 
days (160-time steps), is recommended. The requirement of the time dimension 
exceeds many of the models used for, e.g., policy recommendations, which 
means that it may be necessary to simplify the models in some other aspect, 
such as technology description or spatial resolution. 

• The preparation step pays off. It is important to apply a stringent method rather 
than to select periods at random or with some preconceived idea of 
representativeness. 

For future work, the comparison of the two time-slicing methods could be extended to 
incorporate additional variation management tools, e.g., DSM, storage, and 
transmission. However, such a study would require enhancing the one-node model by 
adding constrained transmission lines with the requisite spatial representation. In this 
case, the representative days approach would have to be based on representative weeks 
in order to handle storage adequately, while the integral method would require 
transition matrices to account for both storage and transmission. 
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2.2 Enhanced Representative Days and System States Modeling for 
Energy Storage Investment Analysis 

Among the different power system planning models, there are short-term models with 
high time resolution such as unit commitment models, with information pertaining to 
every hour, half hour, or 10 minutes; and long-term models such as investment models 
that ignore small time-scale changes so as to make the calculations in a reasonable 
amount of time. 

The introduction of variable renewable energy sources (RES) into the energy system, 
however, makes it necessary to include more short-term dynamics, such as varying wind 
or sunlight availability, in long-term models [26]. Models that incorporate information 
at both time scales include the TIMES modeling framework [27], the Regional Energy 
Deployment System (ReEDS) framework [4], and the Resource Planning Model (RPM) 
[28]. These models have multi-year investment decisions as well as ‘time slices’ within 
each year that represent a wide variety of possible demand and RES production levels. 

The time slices structure allows the models to find solutions on a representative set of 
situations that the system operator must be able to respond to. However, while they do 
not include in detail every hour of the time horizon, the calculations are not overly 
burdensome. 

Nowadays, energy storage systems (ESS) have become a promising flexible option to 
deal with the variability of renewable energy [29]. Realistically modeling ESS requires 
the preservation of chronological information, because the amount of stored energy 
available at any given moment depends on the amount of energy stored in all previous 
time periods [30]. Although some models have endeavored to incorporate ESS 
investment decisions, they do not preserve chronological information and so do not fully 
model storage evolution [31], [32]. In this paper We created medium and long-term 
optimization models for ESS investment with reduced representation of time that 
nevertheless maintains some chronology for the sake of co-optimizing different types of 
storage technologies. Moreover, we propose some new models to improve the existing 
ones in the literature. 

2.2.1 Literature review 

There are two common ways to reduce temporal information while maintaining some 
chronology that can be found in the literature: ‘representative periods’ and ‘system 
states’. The system states are also referred to as load periods, load duration curves, or 
time slices in more simplified versions. Both methods are based on clustering 
techniques. In this section, we describe the main characteristics of both methods and 
review publications that present them. 
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In the ‘representative periods’ (RP) method, a certain number of days, groups of days, 
or in some cases weeks that are representative of the variety of situations that can be 
found during the course of the time horizon (e.g. year) are chosen. All calculations (e.g. 
investment decisions and unit dispatch) are done for the selected days or weeks. Each 
RP ‘represents’ the periods in the year that are similar to itself, so one can reconstruct 
the behavior of the system over the whole year by using the values calculated for the 
RPs in place of the periods they represent. The RPs preserve the internal chronology of 
their hours, making for a more realistic representation of changing storage level over 
the course of a day or week. However, the RP method does not preserve the chronology 
among the RPs. Therefore, any ESS with a cycle longer than the RP (e.g. weekly monthly, 
or yearly rather than daily) will not be chronologically represented with the highest 
accuracy. This method has been used for some of the models that try to incorporate 
both long- and short-term dynamics, such as the RPM model in ref. [33]. There has been 
much debate about the best way to choose these RPs. Some authors use a heuristic 
method, choosing one day for each season or one day in each season for the week and 
for the weekend. Others have proposed methods that involve optimizing both the 
number and clustering of RPs to minimize the difference between the load duration 
curve and the approximate one created by the RPs [34], [35]. There has also been debate 
about the optimal length for RPs. For instance in [36], the authors suggested 
representative groups of days or representative weeks, whose advantage is that it 
increases the amount of chronology preserved, and whose disadvantage is, of course, 
that it increases the calculational burden. The most versatile method for grouping RPs 
comes from [7], and relies on clustering techniques (e.g. k-means or k-medoids) to group 
a number of hours with any number of normalized characteristics (solar energy, 
demand, wind energy, etc). No matter how long the periods or how they are chosen, 
the drawback of the RP method is that it can only deal with relatively short-term storage 
cycles, those that charge and discharges in the course of a period (e.g. day), but not, for 
example, with hydro reservoirs with monthly or yearly cycles. 

The other method, ‘system states’ (SS) was introduced in [12]. It is designed to be an 
improvement on the entirely non-chronological load duration curve method. The SS 
method characterizes each time step (e.g. hours) in the time horizon by a set of features 
such as demand, wind, and solar power availability. Hours with similar values of these 
features are considered to belong to the same ‘system state’. Every hour in the time 
horizon is then assigned to one of the system states, and calculations are done for each 
system state in the same way they would be done for each hour of an hourly model. As 
with the representative periods, each system state gets a weight or duration that 
depends on the number of real time periods in the time horizon that are represented by 
it. This is also called time slices in models such as ReEDS [20]. The innovation of SS 
method in [12] is the transition matrix, which counts up the number of transitions 
between all system states, allowing the addition of chronological constraints, such as 
start-up constraints. In ref. [14] the system states method was extended to deal with 
storage. Although each system state can only calculate the change in energy storage, 
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the total storage in any given hour can be calculated ex post by adding up all the changes 
in storage from the beginning of the time horizon to the hour of interest. The total 
storage is kept within bounds during the modeling process by backtracking to calculate 
the total storage at certain chosen hours in the time horizon and constraining storage in 
those hours to be in bounds. This idea was applied and analyzed in [25] for the operation 
of a network-constrained power system. This paper further extends the use of this SS 
method to the ESS investment problem. 

As we mention at the beginning of this section, this work focuses on the reduction of 
temporal information. However, there are other types of reduction techniques to deal 
with the computational burden in long-term planning models, such as transmission 
network aggregation [37], [38]; exogenous estimation of curtailment reduction, 
curtailment itself, and capacity value [33], [39]. These methods are compatible with the 
models proposed in this paper and could be combined to further improve the reduction 
of the computational burden. Nevertheless, these sorts of combinations are beyond the 
scope of this work. 

The first aim of this paper is to compare the SS method and the RP method for an ESS 
investment model in order to determine which one is better or what system 
characteristics the quality of the approximation method depends on. However, we 
found some difficulties and drawbacks in the basic formulation of both methods, which 
are explained in Section 2.2.2.5. Therefore, the second aim of this paper is to develop 
enhanced versions of both methods in order deal with these difficulties. Thus, the main 
contributions of this paper are: 

• The extension of the SS method in [14], [25] to consider ESS investment. 

• The formulation of enhanced versions of SS and RP to preserve the chronological 
information of different kinds of ESS cycles (from hourly to yearly), which 
outperform existing methods in terms of solution quality and CPU time and allow 
for the co-optimization of both short- and long-term storage. 

• The comparison of SS and RP for ESS investment models using an hourly unit 
commitment model as a benchmark. 

2.2.2 Model Formulation 

This section contains the five model formulations compared in this paper. 

2.2.2.1Notation 

In the following formulation “𝑝𝑝 𝑠𝑠⁄ ” refer to the parameters used to identify time 
divisions: periods (e.g. 1 h) in the detailed model and states in the system states model 
respectively. 
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2.2.2.1.1Indices and Sets 

𝑝𝑝 ∈ P Periods (hours) 
𝑝𝑝𝑙𝑙(𝑝𝑝) Subset with the last period of the time horizon 
𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆 System states 
𝑘𝑘 ∈  K Periods in which storage limit constraints are imposed in system states models 
𝑔𝑔 ∈ 𝐺𝐺  Generation units (thermal or storage) 
𝑡𝑡(𝑔𝑔) Subset of thermal generation units 
ℎ(𝑔𝑔) Subset of storage units 
ℎ𝑙𝑙(𝑔𝑔) Subset of long-term storage (e.g., hydro) units 
ℎ𝑠𝑠(𝑔𝑔) Subset of short-term storage (e.g., batteries) units 
𝑛𝑛,𝑛𝑛′ ∈ Ν Electrical nodes o buses 
𝑛𝑛𝑠𝑠(𝑛𝑛) Subset of electrical nodes or buses without slack bus 
𝑐𝑐 Circuits 
𝒢𝒢𝑔𝑔𝑔𝑔 Generators 𝑔𝑔 connected to bus 𝑛𝑛 
Θ𝑔𝑔𝑔𝑔′𝑐𝑐  Circuits 𝑐𝑐 connected between bus 𝑛𝑛′ and 𝑛𝑛 
𝑟𝑟𝑝𝑝 ∈ 𝑅𝑅𝑅𝑅 Set of representative periods (e.g., days, weeks) 
𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟 Injective map of each period 𝑝𝑝 to a representative period 𝑟𝑟𝑝𝑝 
𝛨𝛨𝑟𝑟𝑟𝑟′  Injective map of each period 𝑝𝑝 to a period 𝑝𝑝′ ∈ 𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟 
𝑝𝑝𝑓𝑓(𝑝𝑝, 𝑟𝑟𝑝𝑝) Subset with the first period 𝑝𝑝 of the representative period 𝑟𝑟𝑝𝑝 

2.2.2.1.2Parameters 

𝐶𝐶𝑔𝑔
𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 Cost of consumed fuel  [k€/MJ] 

𝛼𝛼𝑔𝑔 Variable term of fuel consumption  [MJ/GWh] 
𝛽𝛽𝑔𝑔 Fixed term of fuel consumption  [MJ] 
𝛾𝛾𝑔𝑔 Fuel consumption during the startup  [MJ] 
𝐶𝐶𝑔𝑔𝑜𝑜𝑜𝑜 Cost of operation and maintenance  [k€/GWh] 
𝐷𝐷𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Electricity demand per node  [GW] 
𝑉𝑉𝑟𝑟 𝑠𝑠⁄  𝑔𝑔
𝑜𝑜𝑚𝑚𝑚𝑚  Renewable production per node (e.g., wind or solar) [GW] 

𝑄𝑄𝑔𝑔𝑜𝑜𝑚𝑚𝑚𝑚, 𝑄𝑄𝑔𝑔𝑜𝑜𝑚𝑚𝑔𝑔 Upper and lower bound on production  [GW] 
𝑆𝑆𝑅𝑅𝑅𝑅𝑔𝑔 Maximum 10-minute ramp  [GW] 
𝑋𝑋𝑟𝑟𝑓𝑓𝑠𝑠 Operating reserve  [p.u.] 
𝑊𝑊0ℎ Initial storage level  [GWh] 
𝑊𝑊ℎ

𝑜𝑜𝑚𝑚𝑚𝑚 , 𝑊𝑊ℎ
𝑜𝑜𝑚𝑚𝑔𝑔 Upper and lower bound on energy storage  [GWh] 

𝑊𝑊ℎ
𝑓𝑓𝑚𝑚𝑔𝑔 Minimum final storage level  [GWh] 

𝐼𝐼𝑟𝑟 𝑠𝑠⁄  ℎ Hourly energy inflows  [GWh] 
𝜂𝜂ℎ Efficiency of storage unit  [p.u.] 
𝐵𝐵ℎ𝑜𝑜𝑚𝑚𝑚𝑚  Upper bound on charging/pumping  [GW] 
𝑇𝑇𝑠𝑠 Duration of state  [h] 
𝑇𝑇𝐶𝐶𝑔𝑔 𝑔𝑔′𝑐𝑐

𝑜𝑜𝑚𝑚𝑚𝑚  Transmission capacity of circuit 𝑐𝑐  [GW] 
𝐼𝐼𝑆𝑆𝐼𝐼𝑔𝑔 𝑔𝑔′𝑐𝑐 𝑔𝑔𝑠𝑠  Injection Shift Factors  [p.u.] 
𝑁𝑁𝑠𝑠 𝑠𝑠′  Transition matrix between states  
𝐼𝐼𝑠𝑠 𝑠𝑠′𝑘𝑘  Frequency matrix between states and changes  
𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠 𝑠𝑠′𝑘𝑘  Reduced Frequency Matrix between states and changes  
𝑊𝑊𝐺𝐺𝑟𝑟𝑟𝑟 Weight of representative periods  [h] 
𝑁𝑁𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟′ Transition matrix between representative periods  
𝑁𝑁𝑅𝑅𝑟𝑟𝑟𝑟 Number of periods at each representative period  [h] 
𝑅𝑅 Moving window for storage level  [h] 
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𝐶𝐶ℎ𝑚𝑚𝑔𝑔𝑖𝑖 Investment cost for storage units  [k€/GW] 
𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚 ,𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔 Maximum and minimum energy to power ratio  [h] 

2.2.2.1.3Variables 

𝑞𝑞𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Power production  [GW] 
𝑞𝑞�𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Power production above 𝑄𝑄𝑔𝑔𝑜𝑜𝑚𝑚𝑔𝑔 [GW] 
𝑣𝑣𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Renewable production [GW] 
𝑟𝑟𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Spinning reserve  [GW] 
𝑤𝑤𝑟𝑟 𝑠𝑠⁄  ℎ Storage level  [GWh] 
∆𝑤𝑤𝑠𝑠 𝑠𝑠′ ℎ  Difference in storage  [GWh] 
𝑏𝑏𝑟𝑟 𝑠𝑠⁄  ℎ Hourly charged/pumped power  [GW] 
𝑠𝑠𝑝𝑝𝑟𝑟 𝑠𝑠⁄  ℎ  Hourly energy spillage  [GWh] 
𝑝𝑝𝑝𝑝𝑟𝑟 𝑠𝑠⁄  𝑔𝑔𝑔𝑔′𝑐𝑐  Power flow per circuit  [GW] 
𝑝𝑝𝑛𝑛𝑠𝑠𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Power not supply per node  [GW] 
𝑢𝑢𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Binary dispatch decision  [0-1] 
𝑦𝑦𝑟𝑟 𝑠𝑠⁄  𝑔𝑔 Binary startup decision  [0-1] 
𝑦𝑦𝑠𝑠 𝑠𝑠′ 𝑔𝑔 Binary startup decision for state model  [0-1] 
𝑥𝑥ℎ  Storage investment [GW] 

2.2.2.2Hourly Unit Commitment Model (HM) 

The following equations describe the hourly unit commitment model used as the 
benchmark to test the proposed models, which is based on ref. [40]. 

𝑚𝑚𝑚𝑚𝑛𝑛Ω   ��𝐶𝐶𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 ∙ �𝛽𝛽𝑡𝑡𝑢𝑢𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑡𝑡𝑦𝑦𝑟𝑟𝑡𝑡 + 𝛼𝛼𝑡𝑡𝑞𝑞𝑟𝑟𝑡𝑡�+ 𝐶𝐶𝑡𝑡𝑜𝑜𝑜𝑜𝑞𝑞𝑟𝑟𝑡𝑡�

𝑟𝑟,𝑡𝑡

+ � 𝐶𝐶ℎ𝑚𝑚𝑔𝑔𝑖𝑖𝑥𝑥ℎ
ℎ

  (1𝑎𝑎) 

Subject to: 
∑ 𝑞𝑞𝑟𝑟𝑡𝑡𝑡𝑡∈𝒢𝒢 + ∑ �𝑞𝑞𝑟𝑟ℎ − 𝑏𝑏𝑟𝑟ℎ�ℎ∈𝒢𝒢 + 𝑣𝑣𝑟𝑟𝑔𝑔 + ∑ �𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔′𝑔𝑔𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑔𝑔′𝑐𝑐�𝑔𝑔′𝑐𝑐 ∈Θ +
𝑝𝑝𝑛𝑛𝑠𝑠𝑟𝑟𝑔𝑔 = 𝐷𝐷𝑟𝑟𝑔𝑔  

∀ 𝑝𝑝,𝑛𝑛 (1𝑏𝑏) 

𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑔𝑔′𝑐𝑐 =  ∑ 𝐼𝐼𝑆𝑆𝐼𝐼𝑔𝑔𝑔𝑔′𝑐𝑐𝑔𝑔𝑠𝑠𝑔𝑔𝑠𝑠 ∙ �∑ 𝑞𝑞𝑟𝑟𝑡𝑡𝑡𝑡∈𝒢𝒢𝑡𝑡𝑛𝑛𝑠𝑠
+∑ �𝑞𝑞𝑟𝑟ℎ − 𝑏𝑏𝑟𝑟ℎ�ℎ∈𝒢𝒢ℎ𝑛𝑛𝑠𝑠

+ 𝑣𝑣𝑟𝑟𝑔𝑔𝑠𝑠 +

𝑝𝑝𝑛𝑛𝑠𝑠𝑟𝑟𝑔𝑔𝑠𝑠 − 𝐷𝐷𝑟𝑟𝑔𝑔𝑠𝑠�  
∀ 𝑛𝑛𝑛𝑛′𝑐𝑐 ∈ Θ, 𝑝𝑝 (1𝑐𝑐) 

𝑞𝑞𝑟𝑟𝑡𝑡 = 𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑔𝑔𝑢𝑢𝑟𝑟𝑡𝑡 + 𝑞𝑞�𝑟𝑟𝑡𝑡 ∀ 𝑝𝑝, 𝑡𝑡 (1𝑑𝑑) 
0 ≤ 𝑞𝑞�𝑟𝑟𝑡𝑡 ≤ �𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑚𝑚 − 𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑔𝑔�𝑢𝑢𝑟𝑟𝑡𝑡  ∀ 𝑝𝑝, 𝑡𝑡 (1𝑒𝑒) 
𝑢𝑢𝑟𝑟𝑡𝑡 − 𝑢𝑢𝑟𝑟−1,𝑡𝑡 ≤ 𝑦𝑦𝑟𝑟𝑡𝑡   ∀ 𝑝𝑝, 𝑡𝑡 (1𝑝𝑝) 
𝑟𝑟𝑟𝑟𝑡𝑡 + 𝑞𝑞𝑟𝑟𝑡𝑡 ≤ 𝑢𝑢𝑟𝑟𝑡𝑡𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑚𝑚   ∀ 𝑝𝑝, 𝑡𝑡 (1𝑔𝑔) 
0 ≤ 𝑟𝑟𝑟𝑟𝑡𝑡 ≤ 𝑆𝑆𝑅𝑅𝑅𝑅𝑡𝑡  ∀ 𝑝𝑝, 𝑡𝑡 (1ℎ) 
∑ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ≥ 𝑋𝑋𝑟𝑟𝑓𝑓𝑠𝑠 ∙ ∑ 𝐷𝐷𝑟𝑟𝑔𝑔𝑔𝑔   ∀ 𝑝𝑝 (1𝑚𝑚) 
𝑢𝑢𝑟𝑟𝑡𝑡 ,𝑦𝑦𝑟𝑟𝑡𝑡 ∈ {0,1} ∀ 𝑝𝑝, 𝑡𝑡 (1𝑗𝑗) 
𝑤𝑤𝑟𝑟ℎ = 𝑤𝑤𝑟𝑟−1,ℎ + 𝑊𝑊0𝑟𝑟=1,ℎ + 𝐼𝐼𝑟𝑟ℎ − 𝑞𝑞𝑟𝑟ℎ − 𝑠𝑠𝑝𝑝𝑟𝑟ℎ + 𝜂𝜂ℎ𝑏𝑏𝑟𝑟ℎ  ∀ 𝑝𝑝, ℎ (1𝑘𝑘) 
0 ≤ 𝑣𝑣𝑟𝑟𝑔𝑔 ≤ 𝑉𝑉𝑟𝑟𝑔𝑔𝑜𝑜𝑚𝑚𝑚𝑚   ∀ 𝑝𝑝,𝑛𝑛 (1𝑙𝑙) 
0 ≤ 𝑞𝑞𝑟𝑟ℎ ≤ 𝑄𝑄ℎ𝑜𝑜𝑚𝑚𝑚𝑚 + 𝑥𝑥ℎ   ∀ 𝑝𝑝, ℎ (1𝑚𝑚) 
0 ≤ 𝑏𝑏𝑟𝑟ℎ ≤ 𝐵𝐵ℎ𝑜𝑜𝑚𝑚𝑚𝑚 + 𝜂𝜂ℎ𝑥𝑥ℎ   ∀ 𝑝𝑝, ℎ (1𝑛𝑛) 
0 ≤ 𝑠𝑠𝑝𝑝𝑟𝑟ℎ   ∀ 𝑝𝑝, ℎ (1𝑜𝑜) 
�𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑔𝑔′𝑐𝑐� ≤ 𝑇𝑇𝐶𝐶𝑔𝑔𝑔𝑔′𝑐𝑐

𝑜𝑜𝑚𝑚𝑚𝑚   ∀ 𝑛𝑛𝑛𝑛′𝑐𝑐 ∈ Θ, 𝑝𝑝 (1𝑝𝑝) 
𝑊𝑊ℎ

𝑜𝑜𝑚𝑚𝑔𝑔 + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔𝑥𝑥ℎ ≤ 𝑤𝑤𝑟𝑟ℎ ≤ 𝑊𝑊ℎ
𝑜𝑜𝑚𝑚𝑚𝑚 + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥ℎ   ∀ 𝑝𝑝, ℎ (1𝑞𝑞) 

𝑤𝑤𝑟𝑟𝑙𝑙,ℎ ≥ 𝑊𝑊ℎ
𝑓𝑓𝑚𝑚𝑔𝑔  ∀ ℎ (1𝑟𝑟) 
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The objective function (1𝑎𝑎) minimizes storage investment costs and the total operating 
cost of the system (e.g. startup costs, fixed costs, variable costs, operations and 
maintenance costs, and penalties for spillage and energy not supplied). Constraint (1𝑏𝑏) 
is the demand balance equation. Constraint (1𝑐𝑐) represents the power flow equation 
using Injection Shift Factors (ISF). Constraints (1𝑑𝑑 − 1𝑒𝑒) ensure thermal unit production 
is within minimum and maximum capacity. (1𝑝𝑝) is the startup constraint of the unit-
commitment. (1𝑔𝑔 − 1𝑚𝑚) are reserve constraints. (1𝑗𝑗) states that the commitment and 
connection variables are binary. (1𝑘𝑘) is the storage constraint which states that the 
storage in any hour is the storage in the previous hour plus the net charging and 
discharging in the current hour. (1𝑙𝑙 − 1𝑞𝑞) keep within bounds the renewable production 
per node, the power output per storage unit, the pumped power per storage unit, the 
energy spillage, the power flow through a line, and the amount of energy stored in each 
storage unit. (1𝑚𝑚) and (1𝑛𝑛) include the power capacity increase due to the storage 
investment variable. (1𝑝𝑝) includes the energy capacity increase considering parameters 
𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚 and 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔. These parameters describe the relationship between the energy 
that can be stored (maximum and minimum respectively) and the nominal power of the 
equipment. Finally, constraint (1𝑟𝑟) establishes the minimum storage level at the last 
period of the time horizon. 

2.2.2.3System States Model (SS) 

This section presents the formulation of the system states model as conceived in [25]. 

𝑚𝑚𝑚𝑚𝑛𝑛Ω   ��𝐶𝐶𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 ∙ �𝑇𝑇𝑠𝑠𝛽𝛽𝑡𝑡𝑢𝑢𝑠𝑠𝑡𝑡 + �𝑁𝑁𝑠𝑠′𝑠𝑠𝛾𝛾𝑡𝑡𝑦𝑦𝑠𝑠′𝑠𝑠𝑡𝑡

𝑠𝑠′≠𝑠𝑠

+ 𝑇𝑇𝑠𝑠𝛼𝛼𝑡𝑡𝑞𝑞𝑠𝑠𝑡𝑡� + 𝐶𝐶𝑡𝑡𝑜𝑜𝑜𝑜𝑇𝑇𝑠𝑠𝑞𝑞𝑠𝑠𝑡𝑡�
𝑠𝑠,𝑡𝑡

+ � 𝐶𝐶ℎ𝑚𝑚𝑔𝑔𝑖𝑖𝑥𝑥ℎ
ℎ

  (2𝑎𝑎) 

Subject to: 
∑ 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡∈𝒢𝒢 + ∑ (𝑞𝑞𝑠𝑠ℎ − 𝑏𝑏𝑠𝑠ℎ)ℎ∈𝒢𝒢 + 𝑣𝑣𝑠𝑠𝑔𝑔 + ∑ (𝑝𝑝𝑝𝑝𝑠𝑠𝑔𝑔′𝑔𝑔𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑔𝑔𝑔𝑔′𝑐𝑐)𝑔𝑔′𝑐𝑐 ∈Θ + 𝑝𝑝𝑛𝑛𝑠𝑠𝑠𝑠𝑔𝑔 =
𝐷𝐷𝑠𝑠𝑔𝑔  

∀ 𝑠𝑠,𝑛𝑛 (2𝑏𝑏) 

𝑝𝑝𝑝𝑝𝑠𝑠𝑔𝑔𝑔𝑔′𝑐𝑐 =  ∑ 𝐼𝐼𝑆𝑆𝐼𝐼𝑔𝑔𝑔𝑔′𝑐𝑐𝑔𝑔𝑠𝑠 ∙𝑔𝑔𝑠𝑠  �∑ 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡∈𝒢𝒢𝑡𝑡𝑛𝑛𝑠𝑠
 + ∑ (𝑞𝑞𝑠𝑠ℎ − 𝑏𝑏𝑠𝑠ℎ)ℎ∈𝒢𝒢ℎ𝑛𝑛𝑠𝑠

+ 𝑣𝑣𝑠𝑠𝑔𝑔𝑠𝑠 +

𝑝𝑝𝑛𝑛𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠 − 𝐷𝐷𝑠𝑠𝑔𝑔𝑠𝑠�  
∀ 𝑛𝑛𝑛𝑛′𝑐𝑐
∈ Θ, 𝑠𝑠 (2𝑐𝑐) 

𝑞𝑞𝑠𝑠𝑡𝑡 = 𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑔𝑔𝑢𝑢𝑠𝑠𝑡𝑡 + 𝑞𝑞�𝑠𝑠𝑡𝑡 ∀ 𝑠𝑠, 𝑡𝑡 (2𝑑𝑑) 
0 ≤ 𝑞𝑞�𝑠𝑠𝑡𝑡 ≤ �𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑚𝑚 − 𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑔𝑔�𝑢𝑢𝑠𝑠𝑡𝑡 ∀ 𝑠𝑠, 𝑡𝑡 (2𝑒𝑒) 
𝑢𝑢𝑠𝑠𝑡𝑡 − 𝑢𝑢𝑠𝑠′,𝑡𝑡 ≤ 𝑦𝑦𝑠𝑠′𝑠𝑠𝑡𝑡 ∀ 𝑠𝑠, 𝑡𝑡 (2𝑝𝑝) 
𝑟𝑟𝑠𝑠𝑡𝑡 + 𝑞𝑞𝑠𝑠𝑡𝑡 ≤ 𝑢𝑢𝑠𝑠𝑡𝑡𝑄𝑄𝑡𝑡𝑜𝑜𝑚𝑚𝑚𝑚  ∀ 𝑠𝑠, 𝑡𝑡 (2𝑔𝑔) 
0 ≤ 𝑟𝑟𝑠𝑠𝑡𝑡 ≤ 𝑆𝑆𝑅𝑅𝑅𝑅𝑡𝑡 ∀ 𝑠𝑠, 𝑡𝑡 (2ℎ) 
∑ 𝑟𝑟𝑠𝑠𝑡𝑡𝑡𝑡 ≥ 𝑋𝑋𝑟𝑟𝑓𝑓𝑠𝑠 ∙ ∑ 𝐷𝐷𝑠𝑠𝑔𝑔𝑔𝑔   ∀ 𝑠𝑠 (2𝑚𝑚) 
𝑢𝑢𝑠𝑠𝑡𝑡 , 𝑦𝑦𝑠𝑠′𝑠𝑠𝑡𝑡 ∈ {0,1} ∀ 𝑠𝑠, 𝑡𝑡 (2𝑗𝑗) 
0 ≤ 𝑣𝑣𝑠𝑠𝑔𝑔 ≤ 𝑉𝑉𝑠𝑠𝑔𝑔𝑜𝑜𝑚𝑚𝑚𝑚  ∀ 𝑠𝑠,𝑛𝑛 (2𝑘𝑘) 
0 ≤ 𝑞𝑞𝑠𝑠ℎ ≤ 𝑄𝑄ℎ𝑜𝑜𝑚𝑚𝑚𝑚 + 𝑥𝑥ℎ  ∀ 𝑠𝑠, ℎ (2𝑙𝑙) 
0 ≤ 𝑏𝑏𝑠𝑠ℎ ≤ 𝐵𝐵ℎ𝑜𝑜𝑚𝑚𝑚𝑚 + 𝜂𝜂ℎ𝑥𝑥ℎ  ∀ 𝑠𝑠, ℎ (2𝑚𝑚) 
0 ≤ 𝑠𝑠𝑝𝑝𝑠𝑠ℎ  ∀ 𝑠𝑠, ℎ (2𝑛𝑛) 

|𝑝𝑝𝑝𝑝𝑠𝑠𝑔𝑔𝑔𝑔′𝑐𝑐| ≤ 𝑇𝑇𝐶𝐶𝑔𝑔𝑔𝑔′𝑐𝑐
𝑜𝑜𝑚𝑚𝑚𝑚  ∀ 𝑛𝑛𝑛𝑛′𝑐𝑐

∈ Θ, 𝑠𝑠 (2𝑜𝑜) 

∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ = 0.5 ∙ (𝐼𝐼𝑠𝑠ℎ + 𝐼𝐼𝑠𝑠′ℎ + 𝜂𝜂ℎ𝑏𝑏𝑠𝑠ℎ + 𝜂𝜂ℎ𝑏𝑏𝑠𝑠′ℎ − 𝑞𝑞𝑠𝑠ℎ − 𝑞𝑞𝑠𝑠′ℎ − 𝑠𝑠𝑝𝑝𝑠𝑠ℎ − 𝑠𝑠𝑝𝑝𝑠𝑠′ℎ)  ∀ 𝑠𝑠, 𝑠𝑠′, ℎ (2𝑝𝑝) 
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∑ 𝑁𝑁𝑠𝑠𝑠𝑠′ ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝑁𝑁𝑠𝑠𝑠𝑠′>0

≥ 𝑊𝑊ℎ
𝑓𝑓𝑚𝑚𝑔𝑔 −𝑊𝑊0ℎ + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔𝑥𝑥ℎ   ∀ ℎ (2𝑞𝑞) 

∑ 𝑁𝑁𝑠𝑠𝑠𝑠′ ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝑁𝑁𝑠𝑠𝑠𝑠′>0

≤ 𝑊𝑊ℎ
𝑜𝑜𝑚𝑚𝑚𝑚 −𝑊𝑊0ℎ + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥ℎ  ∀ ℎ (2𝑟𝑟) 

∑ 𝐼𝐼𝑠𝑠𝑠𝑠′𝑘𝑘 ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝐹𝐹𝑠𝑠𝑠𝑠′𝑘𝑘>0

≥ 𝑊𝑊ℎ
𝑜𝑜𝑚𝑚𝑔𝑔 −𝑊𝑊0ℎ + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔𝑥𝑥ℎ   ∀ ℎ, 𝑘𝑘 (2𝑠𝑠) 

∑ 𝐼𝐼𝑠𝑠𝑠𝑠′𝑘𝑘 ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝐹𝐹𝑠𝑠𝑠𝑠′𝑘𝑘>0

≤ 𝑊𝑊ℎ
𝑜𝑜𝑚𝑚𝑚𝑚 −𝑊𝑊0ℎ + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥ℎ   ∀ ℎ, 𝑘𝑘 (2𝑡𝑡) 

The objective function (2𝑎𝑎) incorporates storage investment and operational costs just 
as in the hourly model. The costs of each state are weighted by the number of hours in 
the time horizon that belong to that state, and the startup costs are multiplied by the 
transition matrix which gives the number of transitions between each set of states. 
Constraints (2𝑏𝑏) to (2𝑜𝑜) are formulated exactly as in the hourly model, except that they 
are defined for each system state ‘𝑠𝑠’ rather than each hour ‘𝑝𝑝’. (2𝑝𝑝 − 2𝑡𝑡) are the system 
states formulation of the storage constraints. (2𝑝𝑝) defines the variable 𝛥𝛥𝑤𝑤 which is the 
central difference of the net energy storage gained in two states between which there 
is a transition. (2𝑞𝑞) and (2𝑟𝑟) ensure that storage in the first and last hours of the time 
horizon are within upper and lower bounds including the storage investment. The 
amount of storage in the last hour of the time horizon is determined by multiplying each 
𝛥𝛥𝑤𝑤 by the corresponding value in the transition matrix and adding them all up. (2𝑠𝑠) and 
(2𝑡𝑡) try to keep the energy storage within bounds throughout the time horizon including 
the storage investment. At each of the hours, 𝑘𝑘, a subset of all hours in the time horizon, 
(2𝑠𝑠) and (2𝑡𝑡) add up all 𝛥𝛥𝑤𝑤 from the beginning of the time horizon with the aid of the 
frequency matrices and make certain they are between maximum and minimum storage 
values. 

2.2.2.4Representative Periods (Days/Weeks) Model (RP) 

This section describes the RP model which is a commonly used method of reducing 
temporal information. Although the model is general enough to work with RPs of any 
length, we will speak of representative days for the sake of simplicity. The formulation 
is roughly the same as that of the hourly model, except the constraints only apply to the 
hours within the representative days. 

𝑚𝑚𝑚𝑚𝑛𝑛Ω   � �𝑊𝑊𝐺𝐺𝑟𝑟𝑟𝑟 ∙��𝐶𝐶𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 ∙ �𝛽𝛽𝑡𝑡𝑢𝑢𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑡𝑡𝑦𝑦𝑟𝑟𝑡𝑡 + 𝛼𝛼𝑡𝑡𝑞𝑞𝑟𝑟𝑡𝑡�+ 𝐶𝐶𝑡𝑡𝑜𝑜𝑜𝑜𝑞𝑞𝑟𝑟𝑡𝑡�

𝑡𝑡

�
𝑟𝑟,𝑟𝑟𝑟𝑟𝑟𝑟𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟

+ � 𝐶𝐶ℎ𝑚𝑚𝑔𝑔𝑖𝑖𝑥𝑥ℎ
ℎ

 (3𝑎𝑎) 

Subject to: 
Equations (1𝑏𝑏) – (1𝑟𝑟) ∀ 𝑝𝑝𝑝𝑝𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟 

𝑤𝑤𝑟𝑟=𝑟𝑟𝑓𝑓(𝑟𝑟,𝑟𝑟𝑟𝑟)+𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟−1,ℎ ≥ 𝑤𝑤𝑟𝑟=𝑟𝑟𝑓𝑓(𝑟𝑟,𝑟𝑟𝑟𝑟),ℎ ∀ (𝑝𝑝, 𝑟𝑟𝑝𝑝)𝑝𝑝𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟, ℎ (3𝑏𝑏) 

The objective function (3𝑎𝑎) minimizes the storage investment cost and operational cost 
just as in the hourly model, except that the operational costs associated with each day 
are multiplied by the number of days in the time horizon that are represented by it to 
yield the cost for the entire time horizon. The RP model is constrained to equations (1𝑏𝑏) 
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to (1𝑟𝑟) from the HM benchmark model. Nevertheless, in the RP model, equations (1𝑏𝑏) 
to (1𝑟𝑟) only apply to hours belonging to the selected representative days. 

Equation (3𝑏𝑏) is a special constraint introduced into the RP model that guarantees that 
the amount of energy stored in each unit at the end of each representative day is greater 
than or equal to the amount of energy in storage at the beginning of the day. Since each 
day is calculated separately, this prevents a unit from finishing a day with less energy 
than the starting level of the next day, and thus creating energy from nothing. This is a 
very simple way to deal with the maximum energy storage per year. Other approaches 
ensure that the change accumulated over each representative period does not exceed 
the storage limits and ensure balance over the whole year. However, for the sake of 
simplicity, these types of approaches are not analyzed in this paper. 

Despite the incorporation of (3b), each representative day is independent of the others 
and the RP model does not guarantee chronological continuity among the 
representative days for the ESS. 

2.2.2.5Comments about System States and Representative Periods models 

The SS and RP models have some drawbacks, which are detailed in a case study in 
Section 2.2.3. In this section, we summarize these drawbacks: 

• The SS model results and CPU time are highly dependent on equations (2s) and 
(2t). These equations guarantee that storage levels are between the maximum 
and minimum for each storage unit throughout the time horizon and help to 
keep some chronological information in the optimization process. Equations (2s) 
and (2t) do, however, have two disadvantages. First, short-term storage devices 
such as batteries require several bounds in a day to ensure that storage levels 
are within bounds, but the greater the number of bounds, the longer the CPU 
time. Second, in order to determine the number of bounds (i.e. set k size) we 
need an iterative process detailed in [25] which adds even more CPU time to the 
SS model. 

• The RP model solves each representative period (e.g. day) independently and 
with the same constraints as the HM model. CPU time thus depends on the 
number of representative periods instead of on the number of bounds for 
storage units, as it does in the SS Model. The main drawback is that chronology 
among the representative periods is lost and storage levels of storage units with 
a cycle longer than the representative period (e.g. hydro units) are not 
determined adequately. This is especially important in hydrothermal power 
systems or power systems with pumped hydro storage potential. 
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In the following sections, we propose enhanced versions of the SS and RP models to 
tackle these drawbacks. 

2.2.2.6System States Model with Reduced Frequency Matrix (SS-RFM) 

This section shows the formulation of the System States Reduced Frequency Matrix 
Model, hereafter SS-RFM. This is a new variation on the system states model created to 
reduce the computational time and avoid the iterative process for determining storage 
bounds constraints. 
𝑂𝑂𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡𝑚𝑚𝑣𝑣𝑒𝑒 𝑝𝑝𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛: Equation (2𝑎𝑎) 
Subject to: 
Equations (2𝑏𝑏) – (2𝑟𝑟) 
∑ 𝐼𝐼𝑠𝑠𝑠𝑠′𝑘𝑘 ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑙𝑙𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝐹𝐹𝑠𝑠𝑠𝑠′𝑘𝑘>0

≥ 𝑊𝑊ℎ𝑙𝑙
𝑜𝑜𝑚𝑚𝑔𝑔 −𝑊𝑊0ℎ𝑙𝑙 + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔𝑥𝑥ℎ   ∀ ℎ𝑙𝑙 , 𝑘𝑘 (4𝑎𝑎) 

∑ 𝐼𝐼𝑠𝑠𝑠𝑠′𝑘𝑘 ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑙𝑙𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝐹𝐹𝑠𝑠𝑠𝑠′𝑘𝑘>0

≤ 𝑊𝑊ℎ𝑙𝑙
𝑜𝑜𝑚𝑚𝑚𝑚 −𝑊𝑊0ℎ𝑙𝑙 + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥ℎ   ∀ ℎ𝑙𝑙 , 𝑘𝑘 (4𝑏𝑏) 

∑ 𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠′𝑘𝑘 ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑠𝑠𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝑅𝑅𝐹𝐹𝑅𝑅𝑠𝑠𝑠𝑠′𝑘𝑘>0

≥ 𝑊𝑊ℎ𝑠𝑠
𝑜𝑜𝑚𝑚𝑔𝑔 −𝑊𝑊0ℎ𝑠𝑠 + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑔𝑔𝑥𝑥ℎ   ∀ ℎ𝑠𝑠, 𝑘𝑘 (4𝑐𝑐) 

∑ 𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠′𝑘𝑘 ∙ ∆𝑤𝑤𝑠𝑠𝑠𝑠′ℎ𝑠𝑠𝑠𝑠,𝑠𝑠′ 𝑠𝑠.𝑡𝑡.
𝑅𝑅𝐹𝐹𝑅𝑅𝑠𝑠𝑠𝑠′𝑘𝑘>0

≤ 𝑊𝑊ℎ𝑠𝑠
𝑜𝑜𝑚𝑚𝑚𝑚 −𝑊𝑊0ℎ𝑠𝑠 + 𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥ℎ   ∀ ℎ𝑠𝑠, 𝑘𝑘 (4𝑑𝑑) 

The objective function (2𝑎𝑎) and constraints (2𝑏𝑏 − 2𝑟𝑟) are exactly the same as in the SS 
model. The difference between the two models lies in the handling of storage which has 
been separated into long- and short-term storage, each with its own set of constraints. 
(4𝑎𝑎) and (4𝑏𝑏) take the same form as (2𝑠𝑠) and (2𝑡𝑡), but are only applied to long-term 
storage, which is likely to go through only one or two cycles per year. Set 𝑘𝑘 is a subset 
of hours in the time horizon in which the upper and lower bound are checked. At each 
hour 𝑘𝑘, (2𝑠𝑠) and (2𝑡𝑡) use the frequency matrices to add up all changes in storage from 
the beginning of the time horizon to hour 𝑘𝑘 and check that the total is within bounds. 
(4𝑐𝑐) and (4𝑑𝑑), represent the storage constraints for short-term storage. At each hour 𝑘𝑘, 
they add up all the net changes in storage since the last hour 𝑘𝑘 and constrain that sum 
to be within bounds. This is done with the aid of the Reduced Frequency Matrix (RFM), 
an innovation of this model which is just the difference between the frequency matrix 
(𝐼𝐼𝑠𝑠𝑠𝑠′𝑘𝑘) corresponding to the current hour 𝑘𝑘 and that corresponding to the previous 
element in set 𝑘𝑘, that is, 𝑘𝑘 − 1. In other words, the difference between these two 
elements or hours in the set 𝑘𝑘 could be understood as a moving window. It is important 
to mention that despite the use of the RFM, the storage level could be out of bounds 
because the hours in set 𝑘𝑘 are predefined in the model and we do not know in advance 
the storage level value at each hour in set 𝑘𝑘. The best practice for reducing the number 
of hours in which the storage levels can be out of bounds is to predefine the moving 
window considering the smallest storage cycle in the power system. 
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2.2.2.7Representative Periods Model with Transition Matrix and Cluster Indices (RP-
TM&CI) 

This section shows the Representative Period with Transition Matrix and Cluster Indices 
(RP-TM&CI) model which is the second original contribution of this paper. Although the 
model is sufficiently general to be able to work with representative periods of any 
length, we will once again speak of representative days for the sake of simplicity. 
𝑂𝑂𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡𝑚𝑚𝑣𝑣𝑒𝑒 𝑝𝑝𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛: (3𝑎𝑎) 

Subject to: 
Equations (1𝑏𝑏) – (1𝑟𝑟) ∀ 𝑝𝑝𝑝𝑝𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟 

𝑢𝑢𝑟𝑟′=𝑟𝑟𝑓𝑓�𝑟𝑟′,𝑟𝑟𝑟𝑟′�+𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟−1,𝑡𝑡 = 𝑢𝑢𝑟𝑟=𝑟𝑟𝑓𝑓(𝑟𝑟,𝑟𝑟𝑟𝑟),𝑡𝑡 
∀ 𝑡𝑡, (𝑝𝑝, 𝑟𝑟𝑝𝑝)𝑝𝑝𝛤𝛤𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑝𝑝′ 
/ 𝑁𝑁𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟′ > 0 (5𝑎𝑎) 

𝑤𝑤𝑟𝑟ℎ = 𝑤𝑤𝑟𝑟−𝑅𝑅,ℎ + 𝑊𝑊0𝑟𝑟=1,ℎ + ∑ ∑ �𝐼𝐼𝑟𝑟′′ℎ −𝑟𝑟′′∈𝛨𝛨𝑟𝑟′𝑟𝑟′′
𝑟𝑟
𝑟𝑟′=𝑟𝑟−𝑅𝑅+1

𝑞𝑞𝑟𝑟′′ℎ − 𝑠𝑠𝑝𝑝𝑟𝑟′′ℎ + 𝜂𝜂ℎ𝑏𝑏𝑟𝑟′′ℎ�  
∀ 𝑝𝑝, ℎ (5𝑏𝑏) 

The objective function has the same formulation as the regular representative day 
model, i.e. (3𝑎𝑎). The RP-TM&CI model is constrained with equations (1𝑏𝑏) to (1𝑟𝑟) for all 
the hours belonging to the selected representative days. (5𝑎𝑎) is an innovation of this 
model. It creates continuity between the representative days and prevents unnecessary 
startups by using a transition matrix to require that for any pair of representative days 
that transition from one to the other, the thermal units that are on in the last hour of 
the first are also on in the first hour of the second. As written here, if there is even one 
transition between the two days, this constraint is applied. However, the constraint 
could be set to take effect only if there is a considerable number of transitions between 
the two days, 5 or 10% of the transitions in the time horizon, for example. (5𝑏𝑏) is the 
second innovation of this model; it creates the continuity in storage across the entire 
time horizon that allows for the modeling of long-term storage. It does this by checking 
at regular intervals (1 week) that all the energy charged and discharged since the 
previous week plus the total energy at the last check point are within bounds. This is 
possible because, as a result of the clustering procedure to determine the representative 
days, we know the Cluster Indices (CI), which is a numeric column vector where each 
row indicates the cluster assignment (i.e. representative day) of the corresponding day 
of the year. This information is included in the model using the subset 𝛨𝛨𝑟𝑟𝑟𝑟′. 

2.2.3 Case Studies and Results 

As a case study, we chose the Spanish power system in target year 2030. The Spanish 
case is interesting because it has hydro reservoirs (i.e. ESS with monthly or yearly cycle) 
and, according to ENTSO-E [41], the next ten years will likely bring investment in Battery 
Energy Storage System (BESS) and Pumped Hydroelectric Energy Storage (PHES), i.e. ESS 
with daily or weekly cycle. We ran four different scenarios or visions for 2030 on the 
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hourly model and the four approximate models. The wind and solar profiles for these 
visions were taken from [42], [43] while hourly demand data and annual production per 
technology were taken from the ENTSO-E ‘Ten Year Network Development Plan 2016’ 
[41]. Vision 1 and 3 were based on national predictions, whereas visions 2 and 4 were 
designed with the whole of Europe and climate protection goals in mind. The scenarios 
include a significant development of renewable electricity sources, supplying 35% to 
60% of the total annual demand, depending on the Vision. Moreover, the hourly 
demand curve of each Vision reflects the potential for demand response, which rises 
from 5% in Vision 1 to 20% in Vision 4. A summary of the main assumptions of each 
vision can be found in the Appendix. 

For each of the four visions, the SS and RP models were run with four different numbers 
of clusters for increasing time resolution. The RP and RP-TM&CI models used 4, 9, 18, 
and 37 representative days which corresponds respectively to 1%, 2%, 5% and 10% of 
the time horizon. Time resolution within each representative day is hourly. The SS and 
SS-RFM models used 26, 48, 96, and 216 system states. These numbers of states were 
chosen because they provided a ‘fair’ comparison with the clusters used with the RP 
models by having roughly the same number of binary variables. 

The representative days were chosen by normalizing time series for the hourly demand, 
wind availability, solar availability, and hydro inflows, and combining 24 hours of those 
time series (96 dimensions in all) into a single point to be clustered with the rest of days 
of the year using k-medoids. The system states were chosen in an analogous manner. 
The four-time series were normalized, but this time each point to be clustered 
represented only one hour (4 dimensions) and the clustering method was k- means so 
that the resulting system state was the centroid of the cluster (a composite hour) rather 
than a true hour. 

We performed two analyses. In the first one, we ran the models without ESS investment 
in order to determine the accuracy of the models from the operational point of view. In 
the second, we analyzed the ESS investment to compare the results of investment 
decisions made by the four approximate models to those of the benchmark, HM model. 

2.2.3.1Operation Only Results 

For this case study, we considered a total BESS installed capacity of 10 GWh with a 
maximum output of 1 GW and a 0.9 efficiency coefficient.  

Fig. 10 shows a box & whisker plot for CPU Time and objective function error considering 
the results for each vision. All models were solved until optimality, i.e. until the 
integrality gap equaled zero. Fig. 10 shows the time necessary for the solution of each 
model as a fraction of the time taken by the hourly model as the number of clusters (i.e. 
system states or representative days) increases. As expected, the amount of time 
necessary for model solution increases with the temporal resolution, but up to the 3rd 
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time resolution (18rp, 96ss) all four approximate models took less than 5% of the time 
that the hourly models took. Also, as expected, increasing the number of system states 
or representative days reduced the error in the objective function, see Fig. 11. Fig. 11 
also shows the improvement obtained with the SS-RFM and RP-TM&CI models proposed 
in this paper. The SS-RFM model took between 4 and 20 times less CPU time than the SS 
model without hampering the performance of the approximation in the objective 
function error. Moreover, the RP-TM&CI model reduced the objective function error of 
RP model as the number of representative days increase without a significant rise in the 
CPU time. These results show some of the advantages of the model proposed in this 
paper. For the sake of simplicity, the rest of this section shows only the results for the 
3rd time resolution (18rp, 96ss) because it has a good trade-off between CPU time and 
objective function error. 

 
Fig. 10 CPU time. 
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Fig. 11 Objective function error. 

So far, we have used objective function error to judge the accuracy of the approximate 
models, nevertheless, results such as annual production per technology, total number 
of startups, and energy prices allow for a more detailed comparison. Table 3 shows the 
average error for these results when comparing each approximate model to the hourly 
model. Negative values in Table 3 show overestimation in the approximate model while 
positive values are underestimation. For thermal production SS, SS-RFM, and RP-TM&CI 
models have errors lower than 3% while the RP model has error between 5% and 11% 
because it solves each representative day individually. The SS and SS-RFM models give 
the estimation of total hydro production closest to that of the hourly model while the 
RP model gives a very poor estimate. This is because the RP model constrains the storage 
at the end of each day to be higher than at the beginning so hydro storage cannot evolve 
according to its natural yearly cycle. The RP-TM&CI model, however, does succeed in 
estimating the annual hydro production, which is what it was designed to do. The SS and 
SS-RFM models do not approximate the annual battery production very well, as the 
models cannot keep the energy fully within bounds throughout the time horizon. The 
RP-TM&CI model gives a value of the total annual battery production that is closest to 
the HM model. RES production is estimated with good accuracy (i.e. errors less than 
0.5%) for all models, while the RES curtailment has more error and is underestimated in 
all models. However, representative periods-type models have slightly better accuracy 
than system states-type models. The RP model overestimates the number of necessary 
startups during the year of peaking units (CCGT), which is only to be expected since it 
treats each day as separate from the others. Because they maintain some chronology 
between periods using the transition matrix, SS and SS-RFM do a better job of estimating 
startups than the RP. However, the RP-TM&CI model has the number of startups closest 
to that of the HM model, as it uses its transition matrix to keep continuity between the 
thermal units at the end of one day and the beginning of the next. These results also 
demonstrate the effectiveness of the RP-TM&CI model over the RP model. In the case 
of the energy prices, the RP model makes the worst estimate due to the previous results. 
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The average prices in SS, SS-RFM, and RP-TM&CI are all quite accurate, but the maximum 
price is better estimated in the enhanced models, SS-RFM and RP-TM&CI. This is 
important because the storage investment results are partially driven by the differences 
between the maximum and minimum prices. 

Table 3: Average errors. 

Result SS SS-RFM RP RP-TM&CI 

Pr
od

uc
tio

n 

Nuclear -0.3% -0.2% 5.4% -0.2% 
Coal 1.9% 1.2% 10.5% -2.0% 
CCGT 2.3% 2.8% -10.6% 1.3% 
Hydro -0.2% -0.2% -10.4% 0.8% 
Battery 7.3% 11.3% -17.0% -4.8% 
Renewable -0.5% -0.5% -0.4% -0.5% 

RES curtailment 24.7% 24.9% 18.4% 18.6% 

St
ar

t-
up

 Coal -53.9% -54.3% -52.4% -9.3% 
CCGT -73.6% -75.2% -91.3% -21.0% 

Pr
ic

e Average -0.5% 0.03% 8.0% 0.7% 
Max -25.4% -8.5% -22.7% 2.1% 
Min 0.0% 0.0% 0.0% 0.0% 

Fig. 12 shows the storage level evolution for hydro unit and BESS for vision 1. Not only 
is the total yearly hydro production estimated by SS, SS-RFM, and RP-TM&CI very close 
to that of the HM as shown in Fig. 12, but the overall storage evolution closely follows 
that of the HM, Fig. 12. The RP model cannot correctly estimate the evolution of storage 
levels considering the production, consumption, inflows, and spillages for each 
representative day because the representative days are not related among themselves. 
The RP-TM&CI model fixes this by considering chronology among the representative 
days using the transition matrix and cluster indices. In fact, the RP-TM&CI model yields 
the prediction of hydro storage levels that is most similar to that of the HM model. The 
BESS storage level is shown in Fig. 13 for a week of the year. RP and RP-TM&CI models 
perform best when the BESS charge and discharge in a single day. If, however, the true 
BESS charges and discharges over the course of more than one day then the RP and RP-
TM&CI have trouble approximating that, as they are limited to the representative days. 
Despite this, the RP-TM&CI model performs better than the RP model due to the 
chronological information shared among the representative days. The SS and SS-RFM 
models have better performance than the representative days models because they are 
not limited to the period length, i.e. 24 hours, and this allows them to capture charging 
and discharging periods longer than a day. However, as mentioned in Section 2.2.2.6, 
the SSs model cannot guarantee that BESS storage levels stay within bounds. In Fig. 13 
both SS and SS-RFM predict that BESS storage levels will exceed the upper bound, which 
is unrealistic in a power system operation. To correct that behavior, the number of 
constraints should be increased, but this vastly increases CPU time in the SS model and 
increases the error in the SS-RFM model. If the extra constrained hours are chosen using 
the iterative method, this increases the CPU time still further. 



 
Final report: "Task1: Uncertainty integration and representation of time horizon 

for long-term models" 
 

30  Dec 2020 

 
Fig. 12 Hydro storage level. 

 
Fig. 13 BESS storage level. 

2.2.3.2ESS Investment Results 

For this case study only, the investment results are shown because the trend is similar 
to that of the operational results (e.g. production, number of start-ups, prices. We 
consider the possibility of investment in BESS technology. Unlike the previous case 
study, BESS initial capacity is not predefined. We consider an investment cost of 20 
[€/kW] for BESS according to the report “Technology development roadmap towards 
2030” [44] and a maximum energy to power ratio (𝐸𝐸𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑚𝑚𝑚𝑚) of 4 hours. Table 4 shows 
objective function error and investment error for each vision using the HM model results 
as a reference. All four models underestimate the objective function, especially when 
there is a high share of variable RES (vision 4). However, the range of the error values 
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remains similar to those shown in Fig. 11. As for the investment error, the RP-TM&CI 
model offers the best approximation. This is because it is the model that most accurately 
estimates energy prices and energy production of each technology. Both the SS-RFM 
and RP-TM&CI models, the original contributions of this paper, represent significant 
improvements on their former versions SS and RP. 

Table 4: Investment result error per vision. 

Result Vision SS SS-RFM RP RP-TM&CI 

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Er

ro
r [

%
] V1 0.5% 0.1% 0.8% 0.1% 

V2 1.2% 1.0% 4.4% 0.7% 
V3 0.5% 0.4% 4.8% 5.4% 
V4 6.4% 6.5% 1.8% 5.6% 

Ba
tt

er
y 

In
ve

st
m

en
t 

Er
ro

r [
%

] V1 72.4% 52.0% 38.3% -10.3% 
V2 35.4% 32.9% 22.2% -8.3% 
V3 57.1% 49.8% 32.3% -2.5% 
V4 34.4% 28.8% 31.7% 3.9% 

Fig. 14 shows BESS investment obtained with all the models for each vision, and the 
share of variable RES (i.e. wind and solar productions). As expected, BESS investment 
increases when the variable RES share increases in the power system. The SS model and 
the SS-RFM model underestimate the investment by the greatest amount due to their 
main drawback, which is that they do not fully guarantee that the energy stored in the 
batteries is lower than the capacity of the batteries. This means that they permit energy 
to be stored beyond what investment has paid for, and therefore require less 
investment to achieve the same results as the RP model and the RP-TM&CI model. 

 
Fig. 14 BESS investment and variable RES share for each vision. 
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2.2.4 Discussion 

In this section we want to highlight two main aspects of the results: the relationship 
between RES curtailment and storage investment, and the link between short- and long-
term storage. 

First, Fig. 15 shows the variable RES curtailment as a percentage of the total available 
RES for each vision. The amount of curtailment determined by all models 
underestimates the reference values from the hourly model. While a portion of the 
under-investment in storage shown in Section 2.2.3.2 is due to the inaccuracies in the 
way storage is represented in each model, some of the underinvestment may also come 
from the models’ underestimation of variable RES curtailments. This is based on the 
tight connection between RES curtailment and storage needs, as shown in ref. [39]. 
Models such as ReEDS and RPM use exogenous estimations to relate these two aspects 
in systems with high share of RES. However, the models proposed in this paper 
determine this relationship endogenously. Improvements in the clustering process could 
be performed to improve this relationship; however, further research is needed to verify 
this hypothesis. 

Second, in this paper we focus on modeling energy storage investment with operational 
detail, considering long-term (i.e. seasonal) hydro storage generation as well as short-
term (i.e. hours) storage systems such as batteries. These are very different resources in 
the power system. Therefore, the following question arises: Why try to model both with 
the same methodology? Hydro storage already exists in most real power systems and 
more could be built in the future, and short-term storage (e.g. BESS) is getting cheaper 
and could be a good technical solution to reduce RES curtailments even with relatively 
low energy to power ratios (e.g. 1-4 h). Moreover, if both types of storage are not 
considered at the same time, then an assumption must be included regarding storage 
operation. For example, it is possible to consider maximum available hydro energy 
without tracking the storage level, or to assume a peak shaving for short-term ESS. In 
either case one decision is fixed while the other is optimized. Therefore, possible 
synergies between both storage systems are neglected. This is the case of more 
traditional hydrothermal dispatch models. 

The RP-TM&CI model co-optimizes both types of storage. Hence, the operational 
decisions of short- and long-term storage are now linked and depend on each other. The 
benefits of this co-optimization are shown in the results of Section 2.2.3. In fact, the best 
results are obtained with the RP-TM&CI model, which represents the relationship 
between both types of storage better than the other approximate models. It should also 
be noted that the RP-TM&CI model could be used to improve traditional hydrothermal 
models in which the water value serves as a consistent way of coupling long-term 
reservoir management with short-term operations of storage units. Using the RP-TM&CI 
model it might be possible to obtain the water value of long-term reservoirs internalizing 
the information of short-term storage, which is not possible in traditional hydrothermal 
models. 
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Fig. 15 variable RES curtailment. 

2.2.5 Conclusion 

This paper compares four different methods of approximating time representations in 
an hourly unit-commitment model with ESS investment. These methods include the SS 
model and the RP method as well as enhanced versions of the SS and RP models (the SS-
RFM model and the RP-TM&CI models) which are the new contributions of this paper 
and perform better than the original versions. 

The SS model was originally developed to include chronology and high time resolution 
details in mid- and long-term models. While it can deal with long-term storage, it cannot 
accurately estimate short-term storage, and quickly becomes calculation intensive 
because of the storage constraints. The SS-RFM model takes much less time to run than 
the regular SS model, because it reformulates the storage constraints, but it does not 
improve the accuracy of the short-term storage modeling. Moreover, SS models could 
lead to infeasible results (i.e. more energy stored than the maximum storage capacity), 
which is their major drawback, and means that they require additional adjustments for 
most practical applications. 

Unlike the SS models, the RP model cannot handle long-term storage, but it deals well 
with short-term storage as it preserves within-day chronology. The RP-TM&CI model 
combines aspects of the SS and RP models to account for both short and long-term 
storage. According to the case study results, it is the most accurate of the four 
approximate models and does not require a significant increase of CPU time. These 
results support the idea that including chronological information among representative 
periods may be an efficient way to include small time scale variations in longer-term 
planning models that involve storage. Doing so is a critical need in the adequate 
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representation of power systems that include a significant and increasing quota of 
variable renewable sources and energy storage systems. 

Looking forward, the RP-TM&CI model could be used to analyze the co-optimization of 
the water value in hydro storage with the storage value of short-term storage such as 
batteries. This kind of analysis could improve traditional hydrothermal dispatch models 
in which short-term storage is rarely considered. Moreover, the RP-TM&CI model could 
be extended to a stochastic model to consider uncertainty in renewable energy 
production or hydro inflows for long-term storage. Therefore, the main challenge in this 
topic is the representation at the same time of long- and short-term uncertainties, such 
as in [45]. 

2.3 Opportunity Cost Including Short-Term Energy Storage in 
Hydrothermal Dispatch Models Using a Linked Representative Periods 
Approach 

Due to climate policy and the increasing reduction of renewable investment costs, 
power systems are transitioning to accommodate wind and solar generation, which will 
require system flexibility for balancing requirements to maintain system performance 
[46]. Most ways to determine the value of flexibility of a power system, are based in 
running Unit-Commitment (UC) models [47]. In this work, UC constraints are considered 
in order to represent the value of this flexibility as the short-term opportunity cost in 
hydrothermal dispatch models. Since the current technologies have limited technical 
capabilities to provide this flexibility, new alternatives are required. In this context, 
short-term storage systems, e.g., Battery-based Energy Storage Systems (BESS) or 
Pumped-hydro energy storage (PHS), are one of the most promising options that can 
deliver technical and economic benefits in the electric power sector such as providing 
the required flexibility and reducing system operational costs [29]. For instance, authors 
in [48] have shown that PHS reduces the operational cost by 2.5–11% in a wind power 
integration context for the Great Canary island in Spain. Therefore, there are significant 
short-term opportunity costs that should be considered in the medium- and long-term 
planning (e.g., hydrothermal dispatch is the focus in this paper). However, these 
opportunity costs are not properly considered or simplified in the classical hydrothermal 
models. In this context, both flexibility requirements and short-term storage systems 
operation require chronological information in order to be properly addressed in 
medium- and long-term planning models. Some authors have made an effort to make 
this analysis by using representative periods in their models. For instance, authors in 
[49] use a representative day to study the allocation and investment of ESS while authors 
in [35] focus on how to select the representative periods considering renewable energy 
sources. This is a common and valid assumption for power systems with a low share of 
hydro generation. However, hydrothermal power systems are highly dependent on 
seasonal hydro storage. Therefore, the interaction between short-term storage (intra-
day or intra-week) and seasonal storage is relevant to co-optimize the use of hydro 
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generators with short-term storage units that can provide similar services, such as 
energy arbitrage and operating reserves procurement for flexibility requirements [50]. 

This research focuses on the representation of short-term operational decisions in 
hydrothermal dispatch models, how these decisions change the operational decisions, 
and opportunity costs of seasonal storage. These results are useful for planning and 
policy analysis, as well as for bidding strategies of ESS owners in day-ahead markets and 
not taking them into account may lead to infeasible operation or to suboptimal planning. 
For instance, an underestimation of the opportunity cost in hydro generation during the 
operational planning may lead to use more hydro production, which could represent a 
risk for the power system during a dry season. The results in Section 2.3.5 show that 
classic hydrothermal dispatch models systematically underestimate the opportunity 
cost, while the proposed hydrothermal dispatch model significantly reduces this 
underestimation problem. 

2.3.1 Literature Review 

The hydrothermal dispatch problem aims at minimizing the total fuel cost of thermal 
generation units while properly dispatching the hydro and thermal generation units. 
There are two main types of models, the ones that are focused on the long-term decision 
under hydro inflows uncertainty [51] and the ones that are focused on the short-term 
decisions considering detailed technical generation unit constraints [52]. 

On the one hand, the long-term hydrothermal dispatch problem aims at obtaining an 
optimal use of generation resources, most commonly under water inflows uncertainty, 
for the hydro and thermal generation units over a planning horizon considering multiple 
years [53]. Several models have been proposed for solving this problem in the literature, 
e.g., Ref. [51] is one of the classic references in this topic and more recently Ref. [54] 
gives a comprehensive review of different characteristics and model formulations on 
this topic. In addition, there are several commercial tools that aim to solve the 
hydrothermal dispatch problem that have been used in scientific research, such as: 
SDDP developed by PSR, PLEXOS Integrated Energy Model by Energy Exemplar, ProdRisk 
by SINTEF, NEWAVE by CEPEL [55], and StarNet Model by IIT [56]. For medium- or long-
term studies, these tools use a Load Duration Curve (LDC) approach (also known as load-
levels approach) with monthly or weekly stages. This is mainly due to the computational 
efficiency of LDC for large-scale systems. However, the LDC approach lacks chronological 
information within stages (e.g., weeks or months) and fails to represent short-term 
constraints (e.g., ramps, storage balance, etc.) [12]. 

On the other hand, the short-term hydrothermal dispatch aims at minimizing the fuel 
cost of thermal units for 1 day or 1 week while meeting various detailed hydraulic and 
electric system constraints, such as ramps, unit commitment [57], and nonlinear 
constraints of hydro units [52]. Although these approaches emphasize more the 
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representation of short-term operation, they are not suitable to determine the 
opportunity cost of seasonal storage (also known as water value in the hydrothermal 
dispatch context) since their planning horizon covers only one week or less. However, 
short-term decisions may affect the operation of hydro reservoirs in the long term. 
Despite this situation, no relevant work has aimed to improve the representation of 
short-term operational decisions in long-term hydrothermal dispatch models. However 
and more recently, the representative periods (RP) method has been applied to long-
term models in order to consider short-term decisions, such as renewable energy 
variability in the short-term [7] and UC constraints [58]. Generation dispatch and 
investment decisions are made for the selected periods (e.g., days or weeks) with a more 
detailed size of periods (hourly, for example). The RPs preserve the internal chronology 
of the hours, rendering a more realistic representation of changing storage levels over 
the course of a day or week. However, the basic definition of the RP does not preserve 
the chronology among them. Therefore, any Energy Storage System (ESS) with a full 
charge-discharge cycle longer than the RP (e.g., monthly or yearly) will not be 
adequately represented. In order to improve this situation, some authors have proposed 
methods to aggregate time series by modeling both intra-day and seasonal storage. For 
instance, the authors in [59] superpose inter-period and intra-period storage inventories 
to model short- and long-term ESS, while the authors in [60] proposed a hierarchical 
clustering method to maintain the chronology of the input time series throughout the 
whole planning horizon to achieve the same goal. Moreover, the authors have proposed 
a linked RP model that also overcomes this shortcoming in [61]. Based on this last 
reference, a Linked Representative Periods (LRP) is proposed in this paper. By linking 
several RPs, it is possible to preserve some chronology among the RPs by superposing 
intra-period and inter-period storage balance equations. In addition, the selection of RPs 
is an important aspect of the RP approach. Some authors have proposed methods that 
optimize both the number and clustering of RPs to minimize the difference between the 
LDC and the approximate one created by the RPs [34]. The most versatile method for 
grouping RPs comes from [7] and relies on clustering techniques (e.g., k-means or k-
medoids) to group a number of hours with any number of normalized characteristics 
(solar energy, demand, wind energy, etc.). Furthermore, several authors have debated 
about the optimal length for RPs [1]. For instance, in [36], the authors suggested 
representative groups of days or representative weeks, which gives the advantage of 
increasing the amount of chronology preserved. However, the effectiveness of linking 
shorter RPs versus longer RPs has not been analyzed in the LRP approach. The impact of 
the proposed model and the conclusions are analyzed in Section 8. 

These recent developments in the representative periods can be applied to the 
hydrothermal dispatch problem framework in order to overcome the lack of detailed 
short-term decisions in long-term hydrothermal dispatch models. Despite these 
developments in short-term and seasonal storage interaction, in the literature 
opportunity costs in stochastic hydrothermal planning models have not been analyzed 
taking into account the possible interaction of short-term dynamics in the long term. 
This research article focuses on this gap. Moreover, the interpretation of opportunity 
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costs for energy storage systems is not as intuitive as in the LDC models due to the 
superposition of both balance equations, i.e., intra-period and inter-period. Therefore, 
the opportunity cost for energy storage, considering short- (intra-period) and long-term 
(inter-period) operation is defined and analyzed in the proposed LRP model. This 
definition of the opportunity cost using both balance equations has not been 
determined before in the literature, which computes separately the short- and long-
term opportunity costs for energy storage. These results can be used to improve the 
operational planning of hydrothermal power systems in the context of a high share of 
renewables energy sources and flexibility resources such as the BESS. 

The challenge that have been tackled in this paper is to obtain the hourly opportunity 
cost for storage technologies that usually operate on very different time scales. For 
example, BESS might have a full charge/discharge cycle within a couple of hours or days, 
whereas a seasonal hydro storage facility – depending on the size of the reservoir – could 
have cycles of weeks, months or even years. Other important aspects of hydrothermal 
dispatch models such as uncertainty modeling [62] are out of its scope. A general 
formulation is proposed based on stochastic programming, which is compatible with 
different techniques to solve the dimensionality problem such as scenario reduction [63] 
and stochastic dual dynamic programming [64]. 

In this state-of-the-art context, the main contribution of this paper is the derivation and 
analysis of the hourly opportunity cost of storage technologies using the proposed LRP 
model, that improves the operational decisions in hydrothermal dispatch models. In 
other words, the LRP model can obtain an approximation of the ESS hourly opportunity 
cost within the studied time horizon without solving an hourly model. Moreover, the 
LRP model has the advantage that it obtains hourly detailed opportunity cost for 
different types of ESS technologies which operate on different time scales (hydro versus 
battery). This is a novel contribution since, so far, this has not been possible because 
classic LDC-type models lack chronological information among individual hours 
belonging to different load levels. Moreover, due to the reduction of temporal 
information in the proposed hydrothermal LRP model, this model is suitable for 
application on real-life case studies. This is relevant because it means that the proposed 
model can include short-term details that impacts the long-term operational and 
economic decisions without solving an hourly detailed model and in an efficient 
computational time. 

An hourly model (HM) is used as a benchmark to compare our proposal to the classic 
LDC model and then to quantify the improvements in a stylized Spanish hydrothermal 
system. The HM can be solved for small case studies, however, in practice, for large-
scale case studies it may not be possible to be solved. 

The remainder of the paper is organized as follows: Sections 2.3.2 and 2.3.3 describe the 
main concepts in hydrothermal dispatch models and explain the main differences 
among the three models in this paper: the hourly model (HM) (the benchmark model), 
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load duration curve model (LDC) (the classic model), and linked representative periods 
(LRP) (the novel model proposed in this paper). Section 2.3.4 defines the short-term 
storage value and water value definition for the LRP model. The definition of the hourly 
opportunity cost of different storage technologies represents one of the main 
contributions of this paper as it represents the storage opportunity cost extracted from 
hydrothermal dispatch models that accounts for both short- and long-term dynamics of 
the power system. Section 2.3.5 analyzes the results in a stylized Spanish case study 
based on European data for the year 2030. Section 2.3.6 discusses the coordination 
between short- and medium-term models in the LDC model and its equivalent in the 
proposed LRP model. 

2.3.2 Hydrothermal Topology and Scenario Tree 

In the context of hydrothermal dispatch, it is important to establish the hydro topology 

in order to determine the relationship among the water basins because of its impact on 

the dispatch and on the opportunity cost (also known as water value) in hydro 

generators. Fig. 16 shows an example hydro topology where three reservoirs (r1, r2, r3), 

including their hydro units (h1, h2, h3), are related among them. For instance, reservoir 

r3 receives its hydro inflows, turbined water and spilled water from reservoirs r1 and r2, 

and the pumped water from its own hydro unit h3. 
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Fig. 16. Example of hydro topology or water basin 

The main source of uncertainty in hydrothermal power systems is the water inflow [51]. 

This uncertainty is normally represented as a scenario tree [62], in which each node in 

the tree represents a hydro inflow level with a certain probability. In addition, the nodes 

are related among them, creating different scenarios to sample different realizations of 

the hydro inflows. Fig. 17 shows an example of a simple scenario tree with three 

scenarios: wet season, average inflows, dry season. In this example, the first stage 

decisions are taken in the first month represented in the tree (i.e., October) and the 

second stage decisions are taken for the following months. In addition, for each month 

in the second stage there are three different values of hydro inflows from each scenario. 

r1 r2 

r3 

inflows 
Spillage from 
r2 to r3 

h1 h2 

h3 

Turbined water 
from h1 and h2 

to r3 

Turbined water 
from h3 

Spillage from 
r1 to r3 

Pumped water 
from h3 to r3 Pumped water 

from h3 to r2 
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Fig. 17. Scenario tree example 

Both hydro topology and scenario tree shown in this section are used as a reference in 

the remainder of this paper. 

2.3.3 Model Formulation 

2.3.3.1 Nomenclature 

Indices 
𝑝𝑝 ∈ 𝒫𝒫 Periods (e.g., hours) 
𝑚𝑚 ∈ ℳ Months 
𝑅𝑅𝑅𝑅𝑜𝑜,𝑟𝑟 Set that relates hours and months 

𝑤𝑤 ∈ 𝒲𝒲 Type of day in the week (e.g., weekdays or weekend) 
𝑙𝑙 ∈ ℒ Load levels or load blocks 
𝑟𝑟𝑝𝑝 ∈ ℛ𝒫𝒫 Representative periods (e.g., days) 
𝑇𝑇𝑅𝑅𝑟𝑟𝑟𝑟′,𝑟𝑟𝑟𝑟 Set that relates transitions among 𝑟𝑟𝑝𝑝 

𝑘𝑘 ∈ 𝒦𝒦 Hours inside a representative period 

𝐶𝐶𝐼𝐼𝑟𝑟,𝑟𝑟𝑟𝑟,𝑘𝑘 Set that relates hours with representative periods (i.e., cluster 
index) 

𝑟𝑟 ∈ ℛ Reservoirs  
𝑔𝑔 ∈ 𝒢𝒢 Generators 
𝑡𝑡 ⊂ 𝑔𝑔 Subindex of Thermal units 
𝑠𝑠 ⊂ 𝑔𝑔 Subindex of Storage units  
𝑏𝑏 ⊂ 𝑠𝑠 Subindex of Short-term storage units (e.g., batteries) 
ℎ ⊂ 𝑠𝑠 Subindex of Hydro units 

Oct Nov Dic Jan Aug Sep 

Scenario 1 – Average inflows 
Probability = 0.5 

Scenario 2 – Low inflows (dry season) 
Probability = 0.3 

Scenario 3 – High inflows (wet season) 
Probability = 0.2 

First 
Stage 

Second 
Stage 
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𝐻𝐻𝐻𝐻𝑅𝑅ℎ,𝑟𝑟 Set with hydro plants that are upstream of a reservoir 
𝐻𝐻𝑅𝑅𝑅𝑅ℎ,𝑟𝑟 Set with pumped hydro plants that are upstream of a reservoir 
𝑅𝑅𝐻𝐻𝐻𝐻𝑟𝑟,ℎ Set with reservoirs that are upstream of a hydro plant 
𝑅𝑅𝑅𝑅𝐻𝐻𝑟𝑟,ℎ Set with reservoirs that are upstream of a pumped hydro plant 
𝑅𝑅𝐻𝐻𝑅𝑅𝑟𝑟,𝑟𝑟 Set with reservoirs that are upstream of another reservoir 
𝜔𝜔 ∈ 𝛺𝛺 Scenarios 
𝑎𝑎(𝜔𝜔) Scenario tree relations 

Parameters 
𝑑𝑑∗, 𝑜𝑜∗ Demand, operating reserve [MW] 
𝑤𝑤𝑔𝑔∗ Load level duration or 𝑟𝑟𝑝𝑝 weight [h] 
�̅�𝑝𝑔𝑔,𝑝𝑝𝑔𝑔 Maximum, minimum output [MW] 

𝑝𝑝𝑡𝑡 , 𝑣𝑣𝑡𝑡 No load cost [$/h], variable cost [$/MWh] 
𝑠𝑠𝑢𝑢𝑡𝑡 , 𝑠𝑠𝑑𝑑𝑡𝑡 Startup, shutdown cost [$] 
𝑐𝑐ℎ, 𝜂𝜂𝑠𝑠 Production function and efficiency [p.u.] 
�̅�𝑟𝑟𝑟 , 𝑟𝑟𝑟𝑟 Maximum and minimum storage level of the reservoir [hm3] 
𝑟𝑟𝑟𝑟′ Initial and final storage level of the reservoir [hm3] 
𝑠𝑠𝑜𝑜𝑐𝑐�����𝑏𝑏, 𝑠𝑠𝑜𝑜𝑐𝑐𝑏𝑏 Maximum, minimum state of charge [p.u.] 
𝑚𝑚∗,𝑟𝑟
𝜔𝜔  Stochastic hydro inflows [m3/s] 
𝑝𝑝∗𝜔𝜔 Scenario probability [p.u.] 
𝑣𝑣′ Energy not served cost [$/MWh] 
𝑣𝑣′′ Operating reserve not served cost [$/MWh] 

Variables 
𝐻𝐻𝐶𝐶∗,𝑡𝑡

𝜔𝜔 , 𝑆𝑆𝐻𝐻∗,𝑡𝑡
𝜔𝜔 , 𝑆𝑆𝐷𝐷∗,𝑡𝑡

𝜔𝜔  Commitment, startup, and shutdown {0,1} 
𝑅𝑅∗,𝑔𝑔
𝜔𝜔  Production of generation units [MW] 

𝑅𝑅′∗,𝑡𝑡
𝜔𝜔  Production above minimum output [MW] 

𝐶𝐶∗,ℎ
𝜔𝜔 ,𝐶𝐶∗,𝑠𝑠

𝜔𝜔  Consumption of a hydro/storage unit [MW] 
𝑂𝑂∗,𝑔𝑔
𝜔𝜔  Operating reserve of generation unit 

𝑅𝑅∗,𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 ,𝑅𝑅∗,𝑟𝑟

𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔  Intra and inter reservoir level [hm3] 
𝑆𝑆∗,𝑟𝑟
𝜔𝜔   Reservoir spillage [hm3] 
𝐸𝐸𝑁𝑁𝑆𝑆∗𝜔𝜔 ,𝑅𝑅𝑁𝑁𝑆𝑆∗𝜔𝜔 Energy and operating reserve not served [MW] 

𝑆𝑆𝑜𝑜𝐶𝐶∗,𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 , 

𝑆𝑆𝑜𝑜𝐶𝐶∗,𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔  

State-of-charge of a battery [p.u.] 
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In the previous nomenclature, “∗” refers to the parameters used to identify time 
divisions: 𝑝𝑝 for hours in the detailed model, (𝑚𝑚,𝑤𝑤, 𝑙𝑙) in the load-levels model, and 
(𝑟𝑟𝑝𝑝,𝑘𝑘) in the linked representative periods model respectively. 

2.3.3.2 Model Description 

Three optimization models are presented and solved in this paper using a stochastic 
formulation: An Hourly Model (HM), which is used as a benchmark, the classic Load 
Duration Curve (LDC) model, and the proposed Linked Representative Periods (LRP). The 
objective function and constraints of each model are detailed in the Appendix.  

 

 
Fig. 18. Analysis overview: comparison of LDC and LRP models 

Fig. 18 shows an overview of the analysis carried out in this paper. Hourly demand, wind, 
and solar time series are used as input data. Therefore, the HM model can be solved to 
obtain the benchmark results. In addition, two different clustering procedures are 
applied per each node of hydro inflow uncertainty, (i.e., per month) in order to obtain 
the input data necessary for the LDC and the LRP model respectively. First, individual 
hours are clustered in order to obtain the load levels for the LDC model per month. 
Second, the time series are grouped by periods (e.g., for the case study, representative 
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days are considered) and then they are clustered in order to obtain the representative 
periods for the LRP model per month. Finally, the hourly results of each model are 
compared to determine the quality of the approximations in terms of objective function, 
productions, energy stored, and dual variables (e.g., prices, storage value, and water 
value). 

 

It is important to highlight that both load levels and representative periods are selected 
per month because the uncertainty in the hydro inflows is per month, see Fig. 17. 
Scenario tree example 

Therefore, the load levels and representative periods are different among months. This 
is guaranteed through a time division structure in both models. Fig. 19 shows an 
example of the structure of the LDC model, where two months (𝑚𝑚1, 𝑚𝑚2) have a 
subdivision in weekdays (𝑤𝑤1) and weekend (𝑤𝑤2), each one with three different load 
levels (𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3). 

 
Fig. 19. Structure of LDC time division 

Fig. 20 shows an example of the structure for the LRP model, where the two months 
have their own representative periods (i.e., 𝑟𝑟𝑝𝑝1 and 𝑟𝑟𝑝𝑝2 for 𝑚𝑚1, and 𝑟𝑟𝑝𝑝3 and 𝑟𝑟𝑝𝑝4 for 
𝑚𝑚2), each one with a set of chronological hours (𝑘𝑘1 to 𝑘𝑘24 in a 24-hour representative 
period example). 

 
Fig. 20. Structure of LRP time division 

These time divisions facilitate the formulation of storage balance constraints in both 
models considering the scenario-tree structure. Sections 4.1 to 4.8 show the storage 
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balance constraints in the three optimization models. Although the detailed 
optimization models are shown in appendices A to C, the storage balance equations are 
shown here to help understand the analysis in the following sections. 

2.3.3.3 Long-term Energy Storage Balance Constraint in the Hourly Model 

𝑅𝑅𝑟𝑟−1𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔′

− 𝑅𝑅𝑟𝑟𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 + 𝑚𝑚𝑟𝑟𝑟𝑟𝜔𝜔 − 𝑆𝑆𝑟𝑟𝑟𝑟𝜔𝜔 + ∑ 𝑆𝑆𝑟𝑟𝑟𝑟′

𝜔𝜔
𝑟𝑟′ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟′,𝑟𝑟�����������

𝑊𝑊𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑠𝑠𝑟𝑟𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚𝑔𝑔𝑓𝑓 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 𝑓𝑓𝑟𝑟𝑠𝑠𝑡𝑡𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟𝑠𝑠

+

∑ 𝑅𝑅𝑟𝑟ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝐻𝐻𝑅𝑅𝑅𝑅ℎ,𝑟𝑟�����������

𝑇𝑇𝑓𝑓𝑟𝑟𝑏𝑏𝑚𝑚𝑔𝑔𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 𝑓𝑓𝑟𝑟𝑠𝑠𝑡𝑡𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠

−

∑ 𝑅𝑅𝑟𝑟ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝑅𝑅𝑅𝑅𝐻𝐻𝑟𝑟,ℎ�����������

𝑇𝑇𝑓𝑓𝑟𝑟𝑏𝑏𝑚𝑚𝑔𝑔𝑓𝑓𝑇𝑇  𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠 𝑚𝑚𝑔𝑔 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟 𝑟𝑟

+

∑ 𝐶𝐶𝑟𝑟ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝐻𝐻𝑁𝑁𝑅𝑅ℎ,𝑟𝑟�����������

𝑁𝑁𝑓𝑓𝑜𝑜𝑟𝑟𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠 𝑡𝑡𝑜𝑜 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟 𝑟𝑟

− ∑ 𝐶𝐶𝑟𝑟ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝑅𝑅𝑁𝑁𝐻𝐻𝑟𝑟,ℎ�����������

𝑁𝑁𝑓𝑓𝑜𝑜𝑟𝑟𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑡𝑡𝑜𝑜 𝑜𝑜𝑡𝑡ℎ𝑓𝑓𝑟𝑟 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟𝑠𝑠

=

0   ∀𝜔𝜔𝑝𝑝𝑟𝑟  𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  

(1) 

2.3.3.4 Short-term Energy Storage Balance Constraint in the Hourly Model 

𝑆𝑆𝑜𝑜𝐶𝐶𝑟𝑟−1𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔′

− 𝑆𝑆𝑜𝑜𝐶𝐶𝑟𝑟𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 − 𝑅𝑅𝑟𝑟𝑏𝑏𝜔𝜔 + 𝐶𝐶𝑟𝑟𝑏𝑏𝜔𝜔 = 0   ∀𝜔𝜔𝑝𝑝𝑏𝑏   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  (2) 

2.3.3.5 Long-term Energy Storage Balance Constraint in the Load Duration Curve 

𝑅𝑅𝑜𝑜−1𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔′

− 𝑅𝑅𝑜𝑜𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔 + 𝑚𝑚𝑜𝑜𝑟𝑟𝜔𝜔 − 𝑆𝑆𝑜𝑜𝑟𝑟𝜔𝜔 + ∑ 𝑆𝑆𝑜𝑜𝑟𝑟′

𝜔𝜔
𝑟𝑟′ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟′,𝑟𝑟�����������

𝑊𝑊𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑠𝑠𝑟𝑟𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚𝑔𝑔𝑓𝑓 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 𝑓𝑓𝑟𝑟𝑠𝑠𝑡𝑡𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟𝑠𝑠

+

∑ ∑ 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 ∙ 𝑅𝑅𝑜𝑜𝑤𝑤𝑙𝑙ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝐻𝐻𝑅𝑅𝑅𝑅ℎ,𝑟𝑟𝑤𝑤𝑙𝑙���������������������

𝑇𝑇𝑓𝑓𝑟𝑟𝑏𝑏𝑚𝑚𝑔𝑔𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 𝑓𝑓𝑟𝑟𝑠𝑠𝑡𝑡𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠

−

∑ ∑ 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 ∙ 𝑅𝑅𝑜𝑜𝑤𝑤𝑙𝑙ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝑅𝑅𝑅𝑅𝐻𝐻𝑟𝑟,ℎ𝑤𝑤𝑙𝑙���������������������

𝑇𝑇𝑓𝑓𝑟𝑟𝑏𝑏𝑚𝑚𝑔𝑔𝑓𝑓𝑇𝑇  𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠 𝑚𝑚𝑔𝑔 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟 𝑟𝑟

+

(3) 



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          45 

 

∑ ∑ 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 ∙ 𝐶𝐶𝑜𝑜𝑤𝑤𝑙𝑙ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝐻𝐻𝑁𝑁𝑅𝑅ℎ,𝑟𝑟𝑤𝑤𝑙𝑙���������������������

𝑁𝑁𝑓𝑓𝑜𝑜𝑟𝑟𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠 𝑡𝑡𝑜𝑜 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟 𝑟𝑟

−

∑ ∑ 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 ∙ 𝐶𝐶𝑜𝑜𝑤𝑤𝑙𝑙ℎ𝜔𝜔
𝑐𝑐ℎ�ℎ ∈ 𝑅𝑅𝑁𝑁𝐻𝐻𝑟𝑟,ℎ𝑤𝑤𝑙𝑙���������������������

𝑁𝑁𝑓𝑓𝑜𝑜𝑟𝑟𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑡𝑡𝑜𝑜 𝑜𝑜𝑡𝑡ℎ𝑓𝑓𝑟𝑟 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟𝑠𝑠

= 0   ∀𝜔𝜔𝑚𝑚𝑟𝑟   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  

2.3.3.6 Short-term Energy Storage Balance Constraint in the Load Duration Curve 

𝑆𝑆𝑜𝑜𝐶𝐶𝑜𝑜−1𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔′

− 𝑆𝑆𝑜𝑜𝐶𝐶𝑜𝑜𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔 − ∑ 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 ⋅ 𝑅𝑅𝑜𝑜𝑤𝑤𝑙𝑙𝑏𝑏𝜔𝜔

𝑤𝑤𝑙𝑙 + ∑ 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 ⋅ 𝐶𝐶𝑜𝑜𝑤𝑤𝑙𝑙𝑏𝑏𝜔𝜔
𝑤𝑤𝑙𝑙 =

0   ∀𝜔𝜔𝑚𝑚𝑏𝑏   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  

(4) 

2.3.3.7 Intra-period Balance Constraint for Long-term Energy Storage in the Linked 
Representative Periods 

𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘−1,𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔′

− 𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘,𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 + 𝑚𝑚𝑟𝑟𝑟𝑟,𝑘𝑘,𝑟𝑟

𝜔𝜔 − 𝑆𝑆𝑟𝑟𝑟𝑟,𝑘𝑘,𝑟𝑟
𝜔𝜔 + ∑ 𝑆𝑆𝑟𝑟𝑟𝑟,𝑘𝑘,𝑟𝑟′

𝜔𝜔
𝑟𝑟′ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟′,𝑟𝑟�������������

𝑊𝑊𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑠𝑠𝑟𝑟𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚𝑔𝑔𝑓𝑓 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 𝑓𝑓𝑟𝑟𝑠𝑠𝑡𝑡𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟𝑠𝑠

+

∑ 𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘,ℎ
𝜔𝜔

𝑐𝑐ℎ�ℎ ∈ 𝐻𝐻𝑅𝑅𝑅𝑅ℎ,𝑟𝑟�������������
𝑇𝑇𝑓𝑓𝑟𝑟𝑏𝑏𝑚𝑚𝑔𝑔𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 𝑓𝑓𝑟𝑟𝑠𝑠𝑡𝑡𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠

−

∑ 𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘,ℎ
𝜔𝜔

𝑐𝑐ℎ�ℎ ∈ 𝑅𝑅𝑅𝑅𝐻𝐻𝑟𝑟,ℎ�������������
𝑇𝑇𝑓𝑓𝑟𝑟𝑏𝑏𝑚𝑚𝑔𝑔𝑓𝑓𝑇𝑇  𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠 𝑚𝑚𝑔𝑔 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟 𝑟𝑟

+

∑ 𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘,ℎ
𝜔𝜔

𝑐𝑐ℎ�ℎ ∈ 𝐻𝐻𝑁𝑁𝑅𝑅ℎ,𝑟𝑟�������������
𝑁𝑁𝑓𝑓𝑜𝑜𝑟𝑟𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑜𝑜𝑜𝑜 ℎ𝑦𝑦𝑇𝑇𝑟𝑟𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑔𝑔𝑡𝑡𝑠𝑠 𝑡𝑡𝑜𝑜 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟 𝑟𝑟

− ∑ 𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘,ℎ
𝜔𝜔

𝑐𝑐ℎ�ℎ ∈ 𝑅𝑅𝑁𝑁𝐻𝐻𝑟𝑟,ℎ�������������
𝑁𝑁𝑓𝑓𝑜𝑜𝑟𝑟𝑓𝑓𝑇𝑇 𝑤𝑤𝑚𝑚𝑡𝑡𝑓𝑓𝑟𝑟 𝑡𝑡𝑜𝑜 𝑜𝑜𝑡𝑡ℎ𝑓𝑓𝑟𝑟 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑜𝑜𝑚𝑚𝑟𝑟𝑠𝑠

=

0   ∀𝜔𝜔, 𝑟𝑟𝑝𝑝,𝑘𝑘, 𝑟𝑟   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  

(5) 
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2.3.3.8 Inter-period Balance Constraint for Long-term Energy Storage in the Linked 
Representative Periods 

𝑅𝑅𝑜𝑜−1,𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔′

− 𝑅𝑅𝑜𝑜𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔 + ∑ �𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘,𝑟𝑟

𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 − 𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘−1,𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔′

�(𝑟𝑟𝑟𝑟,𝑘𝑘)∈�𝐶𝐶𝐶𝐶𝑟𝑟,𝑟𝑟𝑟𝑟,𝑘𝑘∩𝑅𝑅𝑁𝑁𝑚𝑚,𝑟𝑟� =

0   ∀𝜔𝜔𝑚𝑚𝑟𝑟   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  

(6) 

2.3.3.9 Intra-period Balance Constraint for Short-term Energy Storage in the Linked 
Representative Periods 

𝑆𝑆𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘−1,𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔′

− 𝑆𝑆𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘,𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 − 𝑅𝑅𝑟𝑟𝑟𝑟,𝑘𝑘,𝑏𝑏

𝜔𝜔 + 𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘,𝑏𝑏
𝜔𝜔 = 0   ∀𝜔𝜔, 𝑟𝑟𝑝𝑝,𝑘𝑘, 𝑏𝑏   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  (7) 

2.3.3.10 Inter-period Balance Constraint for Short-term Energy Storage in the Linked 
Representative Periods 

𝑆𝑆𝑜𝑜𝐶𝐶𝑜𝑜−1,𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔′

− 𝑆𝑆𝑜𝑜𝐶𝐶𝑜𝑜𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔 + ∑ �𝑆𝑆𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘,𝑟𝑟

𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 − 𝑆𝑆𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟,𝑘𝑘−1,𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔′

�(𝑟𝑟𝑟𝑟,𝑘𝑘)∈�𝐶𝐶𝐶𝐶𝑟𝑟,𝑟𝑟𝑟𝑟,𝑘𝑘∩𝑅𝑅𝑁𝑁𝑚𝑚,𝑟𝑟� =

0   ∀𝜔𝜔𝑚𝑚𝑏𝑏   𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔)  

(8) 

2.3.3.11 Comparison of Storage Balance Constraints Among the Models 

Here the previous constraints are analyzed for each model. First, in the HM model, the 
storage balance constraints are imposed for each period 𝑝𝑝, equations (1) and (2). 
Therefore, reservoir level and SoC are determined for each hour in the time horizon. 
These results are used as a benchmark to test the LDC and LRP model, see Fig. 18. 
Constraints for LTESS and STESS are stated for 𝜔𝜔′𝑝𝑝 𝑎𝑎(𝜔𝜔), which allows to relate the 
different scenarios through the scenario tree. For instance, Fig. 17 shows a scenario tree 
with three scenarios: wet season, average inflows, dry season. In this example, the 
ancestor 𝑎𝑎(𝜔𝜔) of scenario 3 in November is scenario 1 in October. Therefore, the set 
𝑎𝑎(𝜔𝜔) is relating a scenario with the corresponding predecessor scenario in the tree. 

Second, in the LDC model, both storage balance equations (3) and (4) (i.e., LTESS and 
STESS) include the load-level duration (𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙) to consider the number of hours that are 
represented for each load level. In other words, the multiplication by 𝑤𝑤𝑔𝑔𝑜𝑜𝑤𝑤𝑙𝑙 guarantees 
that all the charged/discharged energy is considered within the month 𝑚𝑚. These 
equations are for the inter-period variables. Intra-period variables are not available in 
this model due to the lack of chronology within the month 𝑚𝑚. 
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Third, in the LRP model, the storage balance constraints are defined for inter- and intra-
periods, equations (5)-(8). These equations create the continuity in storage across the 
entire time horizon that allows for the modeling of short-term and long-term storage 
simultaneously. Intra-period constraints (7)-(8) ensure the storage balance within the 
RP, while inter-period constraints guarantee the storage balance between 
representative periods by checking at regular intervals (e.g., aggregation of hours such 
as months 𝑚𝑚) that all the energy charged and discharged since the previous month plus 
the total energy at the last checkpoint are within bounds. This is possible because the 
cluster index, 𝐶𝐶𝐼𝐼𝑟𝑟,𝑟𝑟𝑟𝑟,𝑘𝑘, and the relationship between periods and months, 𝑅𝑅𝑅𝑅𝑜𝑜,𝑟𝑟, are 
known as a result of the clustering procedure to determine the RPs. The intersection of 
both sets �𝐶𝐶𝐼𝐼𝑟𝑟,𝑟𝑟𝑟𝑟,𝑘𝑘 ∩ 𝑅𝑅𝑅𝑅𝑜𝑜,𝑟𝑟� indicates which RPs belong to the month and, therefore, 
must be considered in the inter-period balance. 

Finally, notice that constraints for LTESS and STESS are equivalent if, for example, a 
hydro reservoir has a pump unit which is not in a hydro basin and it has no hydro inflows. 
However, both constraints are kept in order to facilitate the distinction between both 
types of storage technologies. In real hydro power plants, there is a nonlinear 
dependence between the reservoir head and the reservoir volume [56]. Nevertheless, 
and for the sake of simplicity in storage balance constraints for LTESS, a linear function 
of the turbine outflow is assumed. Although nonlinear dependence could be considered 
at the expense of more complex optimization models such as in [56]. 

2.3.4 Analysis of Energy Storage Opportunity Cost  

The energy storage opportunity cost is the substitution cost of the stored energy that 
can be calculated as the decrease on total system cost when an extra energy storage 
unit is available, also known as dual approach [65]. In hydrothermal dispatch context, 
this value is determined by the thermal generation unit that is replaced by the energy 
storage unit, i.e., hydro generation. 

In Section 2.3.3, three models have been formulated for the hydrothermal dispatch as 
Mixed Integer Programming (MIP) problems. This is a frequent approach in short-term 
hydrothermal scheduling in order to consider practical limitations of the generation 
units such as ramps and UC constraints [66]. However, as it is mentioned in [65], the 
value of dual variables in a MIP is not well-defined. Hence, it is a common practice to 
approximate the dual variables of interest by fixing the integer variables (e.g., 
commitment decisions) obtained in the MIP solution and then solving the model again 
as a Linear Programming (LP) problem [56]. Under this assumption, the opportunity cost 
of ESS can be obtained from the dual variable of the storage balance equations of each 
model, while the opportunity cost of hydro reservoirs is normally called water value [65]. 
However, the name water value cannot be applied to BESS since there are no hydro 
inflows for this type of technology. Instead, the storage value is used to describe the 
opportunity cost of short-term storage (i.e., BESS). 
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• Hourly Model (HM): The opportunity cost for each type of storage is obtained from 
the dual variables of equations (1) and (2). Therefore, water value �𝜇𝜇𝑟𝑟𝑟𝑟

𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔� is 
obtained from (1) and storage value �𝜇𝜇𝑟𝑟𝑏𝑏

𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔� from (2). These opportunity costs 
are for each hour in the time horizon. 

• Load Duration Curve Model (LDC): Water value �𝜇𝜇𝑜𝑜𝑟𝑟
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔� is obtained from (3) and 

storage value �𝜇𝜇𝑜𝑜𝑏𝑏
𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔� from (4). Since there is no chronology between load 

levels, the opportunity cost for each type of storage is obtained only for an 
aggregation of hours (e.g., months). 

• Linked Representative Periods Model (LRP): This model has two balance equations 
for each storage technology. One for the storage balance inside the representative 
period (intra-period) and another for the storage balance through the aggregation 
of hours in the time horizon (inter-period). Each balance equation has its dual 
variable; however, the combination of both dual variables is necessary to 
determine the hourly dual variable that is comparable to the one obtained from 
the HM model. Equation (9) defines the hourly storage/water value for short- and 
long-term storage using the LRP model. 𝜇𝜇𝑟𝑟𝑟𝑟,𝑘𝑘,𝑠𝑠

𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 is obtained from the dual 
variables of (5) and (7) for hydro reservoirs and BESS, respectively. In the same 
way, 𝜇𝜇𝑜𝑜,𝑠𝑠

𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔 is obtained from the dual variables of (6) and (8). Equation (9) shows 
the opportunity cost of energy storage as a linear combination of short- (intra-
period balance) and long-term decisions (inter-period balance). Therefore, the LRP 
model distinguishes the impact of short-term decisions within the total 
opportunity cost, which is not possible in the HM model. Section 2.3.6 shows the 
relevance of (9) in the opportunity cost of storage since it allows to differentiate 
the share of short- and long-term economic information in this opportunity cost. 

𝜇𝜇𝑟𝑟𝑠𝑠
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔 = �    �

1
𝑝𝑝𝑜𝑜𝜔𝜔𝑜𝑜∈𝑅𝑅𝑁𝑁𝑚𝑚,𝑟𝑟

∙
(𝑟𝑟𝑟𝑟,𝑘𝑘)∈𝐶𝐶𝐶𝐶𝑟𝑟,𝑟𝑟𝑟𝑟,𝑘𝑘

�
𝜇𝜇𝑟𝑟𝑟𝑟,𝑘𝑘,𝑠𝑠
𝑚𝑚𝑔𝑔𝑡𝑡𝑟𝑟𝑚𝑚,𝜔𝜔

𝑤𝑤𝑔𝑔𝑟𝑟𝑟𝑟
+ 𝜇𝜇𝑜𝑜,𝑠𝑠

𝑚𝑚𝑔𝑔𝑡𝑡𝑓𝑓𝑟𝑟,𝜔𝜔�    ∀𝜔𝜔𝑝𝑝𝑠𝑠 
(9) 

2.3.5 Case study and Results 

As a case study, a stylized Spanish power system in target year 2030 is chosen. The 
Spanish case is relevant because it has hydro reservoirs (i.e., seasonal storage) and, 
according to ENTSO-E [41], the next ten years will likely bring investment in Battery 
Energy Storage System (BESS), i.e., short-term energy storage. The wind and solar 
profiles were taken from [42] and [43] respectively, while hourly demand data and 
annual production per technology were taken from the vision 1 in the ENTSO-E Ten Year 
Network Development Plan 2016 [41]. For the sake of simplicity, the case study is 
represented as a single node example. The transmission network may change the results 
in the case study, especially if there is any congestion; however, since transmission 
network constraints have already been successfully included in the classic hydrothermal 
LDC model [67] as well as in the former version of the LRP model [61], they are omitted 
here. In addition, Ref. [25] shows that network congestion improves the accuracy of the 
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clustering techniques to reduce temporal information, such as the ones used in this 
paper for the proposed hydrothermal LRP model. 

The water basin is represented by three reservoirs. Reservoirs 1 and 2 are upstream of 
reservoir 3, and, therefore, reservoir 3 receives, besides its hydro inflows, the hydro 
production and water spillage from reservoirs 1 and 2, such as in Fig. 16. The scenario 
tree is a simplified structure of three scenarios in order to consider monthly hydro 
inflows in dry, average, and wet seasons, see Fig. 17. The probabilities for each scenario 
are 30%, 50%, and 20%, respectively. The first-stage decision is taken for October3 and 
second-stage decisions are taken from November to September. For the sake of 
simplicity, the stability of the solution for different scenario trees is not verified. This will 
be addressed in future research to determine the impact of different scenario trees in 
the results. 

Load levels and representative periods are obtained via the k-means clustering 
procedure for each month. The clusters were chosen by normalizing time series for the 
hourly demand, wind availability, and solar availability, see Fig. 18. For the LL model, 12 
load levels (6 for weekdays and 6 for the weekend) per month have been defined. For 
the LRP model, some sensitivities for the selection of the representative periods have 
been defined: 1 representative period with 24h per month (1RPx24h), 1 𝑟𝑟𝑝𝑝 with 48h per 
month (1RPx48h), 1 𝑟𝑟𝑝𝑝 with 96h per month (1RPx96h), 2 𝑟𝑟𝑝𝑝 with 24h per month 
(2RPx24h), and 4 𝑟𝑟𝑝𝑝 with 24h per month (4RPx24h). These sensitivities are performed 
in order to identify if it is better to have only one 𝑟𝑟𝑝𝑝 per month sharing information or 
to have more 𝑟𝑟𝑝𝑝 per month sharing information among them and between months. 
Based on previous results in [61], more 𝑟𝑟𝑝𝑝 per month sharing information may be better 
than one 𝑟𝑟𝑝𝑝 per month. 

Finally, a BESS with a power rating of 200MW, energy capacity of 4 hours, and round-
trip efficiency of 90% is considered. The BESS is installed to deal with hourly variation of 
variable renewable energy sources. 

2.3.5.1 Objective Function and Time to Solve 

Table 5 shows the results using as a reference the results obtained for the HM. The 
objective function error is calculated using the value of the objective function of the 
hourly model as the theoretical value, while the CPU time is shown as a fraction of the 
time taken by the hourly model to solve the problem. All models were solved until 
optimality, i.e., until either their optimal point or the integrality gap equaled zero. 

The analysis of the results shows two main situations. First, the LRP 4RPx24h as the best 
performance in terms of the objective function. The objective function error is lower 

                                                      
3 October is the beginning of the hydrological year in Spain. 
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than 1% compared to the HM model, and it only takes one tenth of the time to solve. In 
addition, all the LRP results for the different sensitivities have objective function errors 
lower than 4%. Second, although the LDC is one of the fastest models to solve the 
problem, its objective function error exceeds 10%.4 Therefore, the LRP improves the 
results of the hydrothermal dispatch problem without hampering the computational 
efficiency. 

The results obtained for the sensitivities of the LRP model confirm that more 𝑟𝑟𝑝𝑝s per 
month sharing information is better than one longer 𝑟𝑟𝑝𝑝 per month. For instance, the 
1RPx48h and 2RPx24h take the same number of hours per month and produce similar 
CPU time performance. However, the objective function error in 2RPx24h is half of that 
obtained with 1RPx48h. Therefore, and for the sake of simplicity, only the LRP 4RPx24h 
model results are shown in the following sections. 

Table 5. Objective Function Error and CPU Time 

 
LRP 

4RPx24h 

LRP 

2RPx24h 

LRP 

1RPx96h 

LRP 

1RPx48h 

LRP 

1RPx24h 
LDC 

OF Error [%] 0.1 1.7 3.4 3.6 3.6 11.7 

CPU Time [p.u.] 0.10 0.02 0.05 0.02 0.01 0.01 

2.3.5.2 First- and Second-Stage Production Results 

Table 6 shows the errors in production per technology for both LDC and LRP model. 
Negative values indicate an underestimation in comparison to the HM result, while 
positive values indicate an overestimation. The black color is used to highlight absolute 
values lower or equal to 5%, light orange color for absolute values greater than 5% and 
lower or equal to 10%, and the dark red color for absolute values higher than 10%. 
Technologies such as coal and fuel oil are not shown because their total production is 
negligible. Additionally, technologies such as wind, solar, and run-of-river are also not 
shown, in this case because the total production error is lower than 1% in both models. 

The results are classified into two groups: first and second stage. The LRP model has 
better results than LDC model in both groups. In fact, BESS production error in the LRP 
model is almost ten times lower than the result with the LDC model for the first stage, 

                                                      
4 Considering twice the number of LL, the LDC objective function error reduces to an error of 6%, but the CPU time increases six-

fold.  
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and almost twenty times smaller for the second stage. The Open Cycle Gas Turbine 
(OCGT) is more difficult to estimate in both models because it is the peak technology, 
and yet the LRP improves the approximation made by the LDC. 

The LDC model underestimates Combined Cycle Gas Turbine (CCGT) production 
(marginal technology most of the time) due to the loss of chronology among the load 
levels that overestimates BESS production, see Table 6. This leads to an underestimation 
of BESS storage values, see Table 6. On the other hand, the CCGT production error in the 
LRP model is lower than 5% as well as the BESS storage value in Table  thanks to the 
more accurate representation of chronological constraints. These results show the 
interdependence between the marginal technologies and the BESS storage value. 

Table 6. Total Production Error per Technology [%] 

 

Tech 
First Stage Second Stage 

LDC LRP LDC LRP 

Nuclear 4.6 1.7 
Sc1 2.9 Sc1 -0.3 
Sc2 2.8 Sc2 -0.4 
Sc3 3.3 Sc3 -0.7 

CCGT -35.8 -0.5 
Sc1 -8.6 Sc1 -3.5 
Sc2 -5.7 Sc2 -4.4 
Sc3 -6.8 Sc3 -2.6 

OCGT -30.7 -22.7 
Sc1 -68.4 Sc1 -49.0 
Sc2 -44.3 Sc2 -0.5 
Sc3 -68.8 Sc3 -16.9 

Hydro -5.5 -4.3 
Sc1 -0.4 Sc1 -0.3 
Sc2 0.6 Sc2 -0.5 
Sc3 -0.3 Sc3 -0.3 

BESS 110.9 9.1 
Sc1 133.9 Sc1 -5.4 
Sc2 115.1 Sc2 -5.1 
Sc3 123.7 Sc3 4.6 

2.3.5.3 Hydro Reservoir and State-of-Charge Results 

In this section, the storage level is analyzed for both technologies, i.e., hydro (seasonal 
storage) and BESS (short-term storage). First, storage level for hydro reservoir is 
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approximated with more accuracy in the LRP model compared to the LDC model. For 
instance, Fig. 21 (top) shows the storage level for reservoir 2 in scenario 1 for both 
models in comparison to the HM model. The storage-level-average error over all the 
scenarios and reservoirs is 4.5% for the LRP model and 9.0% for the LDC model. 
Therefore, the LRP model is twice as accurate as the LDC model for the reservoir levels. 

 

Fig. 21. Reservoir Level [p.u.] (top). BESS SoC [p.u.] over a week (middle). Total number 
of cycles for the BESS (bottom) 

 

Second, the hourly BESS SoC can be obtained for the LRP model, which is not possible 
with the LDC model. Fig. 21 (middle) shows the hourly evolution of the SoC in a particular 
week for the HM and the LRP model. It is possible to observe the daily cycles of the BESS 
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and how the LRP model results mimic the HM solution. The total number of cycles5 
obtained from each model in the target year are compared in Fig. 21 (bottom). This 
figure shows the total number of cycles per scenario for each model. The total number 
of cycles determined from the LDC results doubles the number obtained with the HM 
model, which was expected due to the overestimation in the BESS production shown in 
Table 6. By contrast, the average error in the number of cycles for the LRP model is 5%. 
This result is important because the number of cycles is key to determine replacement 
or maintenance in BESS. 

2.3.5.4 Marginal and Opportunity Costs 

Table 7 shows the errors with Stochastic Marginal Cost (SMC) and Opportunity Cost (OP). 
The HM results have been chosen as a reference for the error calculation. The SMC is 
calculated as the weighted dual variable from the balance equation in each model. The 
OP is calculated as the weighted dual variable from the inter-period storage balance 
equation in each model, equations (3), (4), (6), and (8). The same color notation as in 
Table 6 is used. On the one hand, the LRP model mostly leads to errors lower than 5% 
and is the most accurate model in almost all results. On the other hand, the LDC model 
yields in most of the cases errors higher than 10% and, as expected from the results in 
previous sections, exhibits the worst performance in the opportunity cost of the BESS 
throughout the time horizon, overestimating most of the months the economic signal 
of energy storage. 

The errors in reservoir 3 are higher than those in reservoir 1 and 2. This is a reasonable 
result, considering that reservoir 3 is downstream of reservoir 1 and 2. Therefore, errors 
in reservoirs 1 and 2 propagate to reservoir 3 and complicate the estimation. 

In Section 2.3.4, the equation (9) has been presented, which allows us to determine the 
intra-period or hourly opportunity cost in the LRP model. This represents the main 
advantage over the LDC. Fig. 22 shows the opportunity cost (or storage value) of BESS in 
the HM, LRP, and LDC models for a particular week. The opportunity cost obtained from 
the LRP model mimics the trend followed by the results in the HM model. In fact, almost 
75% of the time, the difference between the results of both models is lower than 10%. 
Fig. 22 shows one value for the LDC model throughout the week because it only 
determines one opportunity cost value per month, see equations (3) and (4). 

 

Table 7. Stochastic Marginal Cost and Opportunity Cost Results – Error [%] 

                                                      
5 The cycles are estimated for all models using the total charge/discharge energy over the year and dividing it by the 

BESS’ maximum energy capacity. 
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Month SMC OP Res 1 OP Res 2 OP Res 3 OP BESS 
LDC LRP LDC LRP LDC LRP LDC LRP LDC LRP 

Oct -13.7 1.3 -16.3 -0.6 -6.6 -0.6 -23.9 2.8 -6.7 -2.0 

Nov -4.7 -2.0 -16.3 -0.6 -6.6 -0.6 -23.9 2.8 -4.7 -0.4 

Dec -28.5 0.3 -16.3 -0.6 -6.6 -0.6 -23.9 2.8 -16.3 -3.6 

Jan -10.8 -1.3 -17.7 -2.4 -8.2 -2.4 -22.6 -1.2 -32.2 -0.9 

Feb -8.7 0.7 -12.5 -0.4 -8.2 -0.4 -22.6 -1.0 -32.4 -3.1 

Mar -13.5 6.6 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -27.4 5.6 

Apr -9.5 0.6 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -29.0 -3.2 

May -14.0 0.2 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -26.7 0.0 

Jun -9.4 1.4 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -26.3 4.3 

Jul -23.1 2.0 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -37.9 4.3 

Aug -13.8 4.7 -11.9 1.2 -6.9 -0.6 -22.3 -1.4 -30.2 1.9 

Sep -15.0 1.5 15.4 0.4 -6.9 -0.6 6.0 0.3 -28.8 -0.9 

Mean Absolute 
Error 

13.7 1.9 14.1 0.7 7.6 0.7 21.0 1.4 24.9 2.5 

 

Fig. 22. Opportunity Cost or Storage Value of BESS [€/MWh] 

2.3.6 Discussion 

The main drawback of the previous result is that the medium-term model, i.e., LDC 
model, does not consider short-term chronological information. In fact, as shown in 
Section 2.3.5, the LDC model has the worst performance. All the time resolutions tested 
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for the LRP model have shown a better performance than the LDC model. This means 
that LRP succeeds in the internalization of short-term chronological information in the 
medium-term hydrothermal problem, which enables inclusion of the operation of BESS 
without solving the HM model for the entire medium-term horizon. In other words, the 
LRP model co-optimizes both medium- (or long-) and short-term decisions. Moreover, 
equation (9) in the LRP has the advantage that it allows to differentiate between both 
components: intra-period and inter-period opportunity cost and therefore, know the 
share of each component in the total opportunity cost.  

 

 
Fig. 23. Share of Inter/Intra Values in total Opportunity Cost of BESS 

Fig. 23 (top) shows the share of these components in the E-RP model for the same week 
in Fig. 22. Most of the time, the inter-period value represents more than 90% of the total 
value through the week, while the intra-period value gets more relevance, near 40%, at 
the end of the week (around hour 156), when the opportunity cost has the biggest 
change in Fig. 22. However, this share in the composition cannot be taken as a general 
behavior. For instance, Fig. 23 (bottom) shows results for another week in the same case 
study. Here, it can be observed that there are hours where the intra-period represents 
the 100% of the total value of the opportunity cost in the BESS. Therefore, the share 
changes depending on the characteristics of the case study as well as the location within 
the time scope. These types of results and analysis cannot be developed in the classic 
LDC model and represent a novel contribution in this research. This contribution opens 
the door to new analysis and studies. For instance, these results give insights to market 
participants of when short-term storage opportunities are more relevant than long-term 
storage opportunities and then considering this situation in their market bids. 
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Another important aspect to discuss is that the coordination of short- and medium-term 
hydrothermal models has been traditionally performed by using two separate models 
and sharing information between them as in [68] and more recently in [69]. One 
medium-term model is run first using a reduced chronology, such as the LDC model 
described in Appendix B, in order to obtain the end volume or the water value from each 
reservoir. Under the assumption that a Stochastic Dual Dynamic Programming (SDDP) 
[70] approach has been used to solve the medium-term model, a piecewise-linear 
Future Cost Function (FCF) can be utilized to meet end-point conditions from the 
medium-term model in the short-term model as it was formerly proposed in [71] and 
more lately in [72]. This information is used as input data in a short-term model to find 
the daily levels and hourly opportunity costs. 

Finally, the LRP model is also compatible with decomposition techniques, such as 
Benders' decomposition or SDDP, in order to consider a large number of scenarios in the 
scenario tree. Therefore, it could be obtained the FCF internalizing the hourly dynamics 
of short-term storage, which is not possible with the current LDC model approach. 

2.3.7 Conclusion 

This paper introduces a novel formulation for stochastic hydrothermal models in which 
short-term opportunity costs are included in the medium- and long-optimization 
process. It has been validated the initial hypothesis, that short-term energy storage (e.g., 
BESS) decisions on energy production impact the opportunity cost (or water value) of 
seasonal storage. In the presented case study, in a comparison with a detailed hourly 
model used as benchmark, the classic LDC approach systematically underestimates the 
water value between 6% and 24% for seasonal hydro reservoirs, while the proposed LRP 
model error varies between 0% and 6.6%, sometimes underestimating and others 
overestimating. In addition, operational results (e.g., productions, number of cycles for 
short-term storage, and storage levels) have a better estimation in the LRP model than 
in the LDC model. Another advantage of the proposed model is the possibility to obtain 
hourly detailed opportunity costs of ESS without solving an hourly hydrothermal 
dispatch model. Moreover, the proposed model formulation allows to differentiate 
between the short- and long-term opportunity costs. For instance, the results show that 
depending on the hour, the intra-period storage value (short-term opportunity cost) 
constitutes up to 100% of the total opportunity cost, demonstrating that inter-period 
opportunity cost may be also relevant for the long-term storage value. The derivation of 
an hourly opportunity cost of ESS that accounts for both short- and long-term dynamics 
represents a novel contribution, as it is not possible to obtain its value from a classic LDC 
model. In addition, the temporal reduction using the linked representative periods in 
the proposed LRP model makes it also suitable to solve real-size case studies. 
Furthermore, long-term opportunity costs due to hydro seasonality in power system 
internalize the hourly opportunity costs. In other words, the water value in seasonal 
storage includes the impact of short-term operational decisions.  



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          57 

 

This result is important to help market participants or planning authorities in their 
decision-making processes (bids or investment decisions in storage assets) by 
determining correct opportunity costs (i.e., short-term prices and long-term expected 
values) with the co-optimization approach in the LRP model and therefore avoiding sub-
optimal solutions from iterative processes (e.g., fixing the hydro reservoirs levels 
obtained from a medium-term model in a short-term operational model). 

Looking forward, the LRP model could be applied to analyze energy and operating 
reserve markets in hydrothermal power systems in a more natural way than using the 
LDC approach. 

2.4 Power-Based Generation Expansion Planning for Flexibility 
Requirements 

eneration Expansion Planning (GEP) is a classic long-term problem in power systems 
that aims at determining the optimal generation technology mix [73]. Environmental 
policies, such as renewable targets [74] or CO2 emission reduction [75] influence in GEP 
decisions, leading to the integration of vast amounts of variable Renewable Energy 
Sources (vRES), i.e., wind and solar, in GEP. Nevertheless, vRES integration has 
consequences in GEP modeling. For instance, previous studies [9], [76], [77] have shown 
the importance of including short-term dynamics on GEP decisions in order to consider 
the increased need of operational flexibility due to vRES integration. Therefore, correctly 
modeling flexibility in GEP models is crucial to reach the right conclusions in the energy 
transition process. 
 

In order to consider operational flexibility in GEP, Unit Commitment (UC) modeling is 
needed to determine system operation [77], [78]. For example, it is known that units are 
being cycled more frequently due to higher vRES flexibility requirements [79]. Studies 
have shown that ignoring startup and shutdown processes highly overestimates the 
flexibility and costs of the system [80]. Another example is ramping constraints. If we 
focus on flexibility and want to know a good (optimal) future generation-mix and 
interconnection capacities for a given scenario, the GEP problem must include at least 
detailed ramping constraints. Moreover, operating reserve decisions have also become 
more relevant in GEP with the integration of vRES because they may ensure that 
generation technologies have an extra income to recover their investment costs through 
these types of ancillary services. 

 
Despite the recent developments to consider flexibility requirements in GEP, classic 

GEP models use energy-based formulations, such as TIMES modeling framework [27], 
the Regional Energy Deployment System (ReEDS) framework [4], Resource Planning 
Model (RPM) [28], and COMPETES [81]. Recent studies [80], [82], [83] have shown that 
energy-based UC models cannot capture variability on demand and vRES, and even 

G 
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assuming that they capture it, they cannot deliver the flexibility that they promise, that 
is, they intrinsically and hiddenly overestimate the flexibility of the system. In addition, 
energy-based formulations inherently lead unfeasible ramping constraints as widely 
discussed in the literature [84], [85]. This is mainly because average energy levels (e.g., 
average level in one hour) do not provide detailed information about the instantaneous 
output of a generator, and constraints such as ramping-limits and demand-balance are 
dependent on instantaneous outputs rather than average levels. This means that more 
flexibility than planned by energy-based models is used in real-time operation (through 
operating reserves and allowing deviations on schedules) to deal with all the problems 
introduced by these traditional energy-based models. These problems are hidden in the 
formulations, and to assess really their performance, real-time simulations are required 
(e.g., 5-min dispatch), as it is widely discussed in [80]. 

 
More recently, power-based models have been proposed [82], [86] to overcome these 

problems by better exploiting the system flexibility [80], by allowing the correct 
modeling of ramping constraints and operating reserves [82], [83] in order to deliver the 
expected and actual flexibility from the generation resources. This is possible because a 
power-based model has a clear distinction between power and energy in its core 
formulation. Demand and generation are modeled as hourly piecewise-linear functions 
representing their instantaneous power trajectories. The schedule of a generating unit 
output is no longer an energy stepwise function, but a smoother piece-wise power 
function. 

 
Another important aspect to determine the flexibility requirements in power systems 

is time resolution. In order to model correctly the real operation of power systems a 
high resolution is needed (e.g., minutes). Current GEP models are based on hourly 
resolution where the underlying assumption is that it is enough to capture the variability 
and flexibility requirements of power systems. However, it has already been shown in 
[80] that real-time simulations (e.g., 5-min time step) help to determine the 
performance of different schedules (operational decisions) to meet the real-time 
flexibility requirements in the power system. This type of real-time validation is not 
common to be carried out because it is considered unnecessary. Nevertheless, to 
validate correctly flexibility capabilities and requirements of the system, this real-time 
evaluation is paramount [80]. Therefore, we carry out a real-time validation stage (e.g., 
5-min simulation) in order to evaluate the quality of investment and operational 
decisions obtained with the models that have been analyzed in this paper. 

 
In this paper, we propose a novel power-based model for GEP presenting advantages 

over the traditional energy-based models. The proposed model optimizes investment 
decisions on vRES, Energy Storage Systems (ESS), and thermal technologies. ESS are 
included because they represent one of the most promising options to provide flexibility 
in power systems in the future [29]. In addition, the investment and operational 
decisions are tested in a real-time validation stage to better reflect the actual flexibility 
that these decisions can provide. The main contributions of this paper are as follows: 
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I. This paper proposes an investment decision model for generation and energy 

storage technologies using a power-based UC formulation as an extension of the 
classic energy-based UC formulations. The proposed power-based GEP-UC 
model improves the classic energy-based long- term capacity expansion models 
by representing the flexibility requirements of power systems more accurately 
(i.e., reserve decisions and ramping constraints) in a long-term horizon 
considering investment decisions. Moreover, we also propose a novel power-
based formulation for ESS (e.g., batteries), so it can be included in the proposed 
power-based model for operation and investment decisions. It is important to 
highlight that both the power-based GEP-UC and the power-based ESS modeling 
for investment and operation represent original contributions as they have not 
been proposed in the literature before. 

 
II. In order to improve how this extended problem can be addressed, we also 

propose a semi-relaxed version of the power-based GEP-UC model, which aims 
at reducing the computational burden without losing accuracy in the results. In 
fact, the real-time validation stage shows that this semi-relaxed version performs 
better than the classic energy-based (integer) model, i.e., makes investment and 
operation decisions that lead to lower costs and emissions than those obtained 
by short-term models, while also solving considerably faster. To the authors’ 
knowledge, this type of insight has not been obtained before in the literature. 

 
The paper is organized as follows: Section 2.4.1 shows model formulations used for 

the GEP problem, considering both energy- and power-based equations. Section 2.4.2 
explains the procedure to evaluate the power system flexibility. Section 2.4.3 
summarizes the data of each case study. Section 2.4.4 discusses the main results, 
including a sensitivity analysis to the ramp capacity of the generation units. Finally, 
Section 2.4.5concludes this paper. 

 

2.4.1 Generation Expansion Model Formulations 

This section presents the objective function and set of constraints for the energy- and 
the power-based GEP-UC formulations. These constraints include investment decisions 
for different generation technologies: thermal generation, ESS, and VRES.  
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Fig. 24. Power demand trajectory and hourly energy demand. 

 
 
Before presenting and discussing the energy- and power-based model formulations, 

let us briefly comment on input data of the respective models. As indicated by the model 
name, in the power-based model most of the constraints are represented in terms of 
power, whereas their equivalent in the energy-based model is formulated in terms of 
energy. As a consequence, a power-based model requires power data (e.g., in MW 
units), and energy-based models require energy data (e.g., in MWh units). While the 
actual input data might be different in type and units, it stems from the same original 
data, which makes the model comparison fair. For example, consider the demand curve 
given in Fig. 24. The energy-based model uses data corresponding to energy blocks (as 
given by the blue step function), whereas the power-based model uses data 
representing a power trajectory (as given by the orange piecewise linear curve). It is 
important to highlight that the total energy in both models is the same. However, 
decision variables and constraints change depending on whether we optimize the 
energy- or the power-based model, as we show in the following sections. Please note 
that similar transformations occur for vRES time series. 

 
Finally, operational decisions are considered using a clustered UC formulation (i.e., 

aggregating similar generating units into one group or cluster), which is commonly 
applied in long-term planning models [78], [87], [88]. 

2.4.1.1Energy-Based Formulation 

The GEP seeks to minimize the investment costs plus the expected value of operating 
costs: production cost, up/down reserve cost, CO2 emission cost, no-load cost, 
shutdown cost, startup cost. Notice that Ψ = {𝑥𝑥, 𝑒𝑒, �̂�𝑒, �̂�𝑐, 𝑟𝑟+, 𝑟𝑟−,𝑢𝑢,𝑦𝑦, 𝑧𝑧, 𝛿𝛿,𝜙𝜙 } corresponds 
to the set of decision variables considered in this model. 
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min
Ψ

∑ 𝐶𝐶𝑗𝑗𝐶𝐶𝑥𝑥𝑗𝑗𝑗𝑗∈𝒥𝒥 + ∑ 𝜋𝜋𝜔𝜔 ∑ �∑ �𝐶𝐶𝑗𝑗𝐿𝐿𝐿𝐿�̂�𝑒𝜔𝜔𝑗𝑗𝑡𝑡 + 𝐶𝐶𝑗𝑗𝑅𝑅+𝑟𝑟𝜔𝜔𝑗𝑗𝑡𝑡+ + 𝐶𝐶𝑗𝑗𝑅𝑅−𝑟𝑟𝜔𝜔𝑗𝑗𝑡𝑡− �𝑗𝑗∈𝒥𝒥 + ∑ �𝐶𝐶𝑔𝑔𝐸𝐸𝑅𝑅�̂�𝑒𝜔𝜔𝑔𝑔𝑡𝑡 +𝑔𝑔∈𝒢𝒢𝑡𝑡∈𝒯𝒯ω∈Ω

𝐶𝐶𝑔𝑔𝑁𝑁𝐿𝐿𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 + 𝐶𝐶𝑔𝑔𝑆𝑆𝑆𝑆𝑧𝑧𝜔𝜔𝑔𝑔𝑡𝑡 + ∑ 𝐶𝐶𝑔𝑔𝑘𝑘𝑆𝑆𝑅𝑅𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘𝑡𝑡𝑘𝑘∈𝒦𝒦𝑔𝑔 ��  
 

(1) 

The system-wide constraints are guaranteed by energy demand balance (2), 
transmission limits (3), and reserve requirements (24)-(25): 

 
∑ �̂�𝑒𝜔𝜔𝑗𝑗𝑡𝑡𝑗𝑗∈𝒥𝒥 − ∑ �̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡𝑠𝑠∈𝒮𝒮 = ∑ 𝐷𝐷𝜔𝜔𝑏𝑏𝑡𝑡𝐸𝐸

𝑏𝑏∈ℬ𝐷𝐷 ∀𝜔𝜔, 𝑡𝑡  (2) 
  −𝐼𝐼𝑙𝑙 ≤ ∑ Γ𝑙𝑙𝑗𝑗

𝐽𝐽 �̂�𝑒𝜔𝜔𝑗𝑗𝑡𝑡𝑗𝑗∈𝒥𝒥 − ∑ Γ𝑙𝑙𝑠𝑠𝑆𝑆𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡𝑠𝑠∈𝒮𝒮 − ∑ Γ𝑙𝑙𝑏𝑏𝐷𝐷𝜔𝜔𝑏𝑏𝑡𝑡𝐸𝐸
𝑏𝑏∈ℬ𝐷𝐷 ≤ 𝐼𝐼𝑙𝑙 ∀𝑙𝑙,𝜔𝜔, 𝑡𝑡 (3) 

 

 
Fig. 25. ESS providing reserves from different operation points. 

 
 
 
The relationship between operational and investment decisions for each technology 

type is guaranteed with (4) for thermal technologies, (5)-(6) for ESS, and (7) for vRES. 
Notice that (5)-(6) model the reserve variables that ESS can provide whether the ESS is 
charging or discharging, see Fig. 25. These constraints define the flexibility reserves that 
ESS can provide. 

 
𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 ≤ 𝑋𝑋𝑔𝑔0 + 𝑥𝑥𝑔𝑔 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (4) 
�̂�𝑒𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ 𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠 ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (5) 

�̂�𝑒𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 − 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≥ −(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (6) 

�̂�𝑒𝜔𝜔𝑖𝑖𝑡𝑡 ≤ 𝑉𝑉𝜔𝜔𝑖𝑖𝑡𝑡𝐸𝐸 (𝑋𝑋𝑖𝑖0 + 𝑥𝑥𝑖𝑖) ∀𝜔𝜔, 𝑣𝑣, 𝑡𝑡  (7) 

 
Thermal generation constraints include: commitment/ startup/ shutdown logic (8), 

minimum up/down times (9)-(10), startup type selection (11)-(12) (e.g., hot, warm, and 
cold startup), energy production limits including reserve decisions (13)-(16) (where 𝒢𝒢1 
is defined as the thermal technologies in 𝒢𝒢 with 𝑇𝑇𝐻𝐻𝑔𝑔 = 1), and total energy production 
(17). The UC formulation presented here is based on the tight and compact formulation 

discharge

charge

+ 𝑋𝑋0 + 𝑥𝑥

− 𝑋𝑋0 + 𝑥𝑥
𝑟𝑟−

𝑟𝑟+ 𝑟𝑟+

𝑟𝑟−

�̂�𝑒, �̂�𝑝

�̂�𝑐, 𝑐𝑐
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proposed in [40]. Furthermore, Gentile et al. [89] have proven that the set of constraints 
(8)-(10) together with (13)-(17) is the tightest representation (i.e., convex hull) for the 
energy-based model. 
𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 − 𝑢𝑢𝜔𝜔𝑔𝑔,𝑡𝑡−1 = 𝑦𝑦𝜔𝜔𝑔𝑔𝑡𝑡 − 𝑧𝑧𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  

(8) 
∑ 𝑦𝑦𝜔𝜔𝑔𝑔𝑚𝑚𝑡𝑡
𝑚𝑚=𝑡𝑡−𝑇𝑇𝑅𝑅𝑔𝑔+1 ≤ 𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡 ∈ �𝑇𝑇𝐻𝐻𝑔𝑔,𝑇𝑇�  

(9) 
  ∑ 𝑧𝑧𝜔𝜔𝑔𝑔𝑚𝑚𝑡𝑡

𝑚𝑚=𝑡𝑡−𝑇𝑇𝑆𝑆𝑔𝑔+1 ≤ �𝑋𝑋𝑔𝑔0 + 𝑥𝑥𝑔𝑔� − 𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡  ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡 ∈ �𝑇𝑇𝐷𝐷𝑔𝑔 ,𝑇𝑇� 
(10) 

𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘𝑡𝑡 ≤ ∑ 𝑧𝑧𝜔𝜔𝑔𝑔,𝑡𝑡−𝑚𝑚
𝑇𝑇𝑔𝑔,𝑘𝑘+1
𝑆𝑆𝑆𝑆 −1

𝑚𝑚=𝑇𝑇𝑔𝑔𝑘𝑘
𝑆𝑆𝑆𝑆 ∀𝜔𝜔,𝑔𝑔, 𝑘𝑘 ∈ �1,𝐾𝐾𝑔𝑔�, 𝑡𝑡  

(11) 
∑ 𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘𝑡𝑡𝑘𝑘∈𝒦𝒦𝑔𝑔 = 𝑦𝑦𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (12) 
  
𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ �𝑅𝑅𝑔𝑔 − 𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 − �𝑅𝑅𝑔𝑔 − 𝑆𝑆𝐷𝐷𝑔𝑔�𝑧𝑧𝜔𝜔𝑔𝑔,𝑡𝑡+1 − max�𝑆𝑆𝐷𝐷𝑔𝑔 − 𝑆𝑆𝐻𝐻𝑔𝑔, 0�𝑦𝑦𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔 ∈ 𝒢𝒢1  (13) 
  
𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ �𝑅𝑅𝑔𝑔 − 𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 − �𝑅𝑅𝑔𝑔 − 𝑆𝑆𝐻𝐻𝑔𝑔�𝑦𝑦𝜔𝜔𝑔𝑔,𝑡𝑡 − max�𝑆𝑆𝐻𝐻𝑔𝑔 − 𝑆𝑆𝐷𝐷𝑔𝑔 , 0�𝑧𝑧𝜔𝜔𝑔𝑔,𝑡𝑡+1 ∀𝜔𝜔,𝑔𝑔 ∈ 𝒢𝒢1  (14) 
  𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ �𝑅𝑅𝑔𝑔 − 𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 − �𝑅𝑅𝑔𝑔 − 𝑆𝑆𝐻𝐻𝑔𝑔�𝑦𝑦𝜔𝜔𝑔𝑔,𝑡𝑡 − �𝑅𝑅𝑔𝑔 − 𝑆𝑆𝐷𝐷𝑔𝑔�𝑧𝑧𝜔𝜔𝑔𝑔,𝑡𝑡+1 ∀𝜔𝜔,𝑔𝑔 ∉ 𝒢𝒢1, 𝑡𝑡 (15) 
𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 − 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≥ 0      ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (16) 
�̂�𝑒𝜔𝜔𝑔𝑔𝑡𝑡 = 𝑅𝑅𝑔𝑔𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (17) 
 
Traditional energy-based UC formulations ignore the inherent startup (SU) and 

shutdown (SD) trajectories of thermal generation, assuming they start/end their 
production at their minimum output. Authors in [80], [82] have shown the relevance of 
the SU and SD processes when they are included in the scheduling optimization. 
Therefore, we also analyze the energy-based formulation including the SU/SD 
trajectories proposed in [90]. Thus, if SU/SD trajectories are considered then (17) is 
replaced by (18). 

 

�̂�𝑒𝜔𝜔𝑔𝑔𝑡𝑡 = ∑ ∑ 𝐸𝐸𝑔𝑔𝑘𝑘𝑚𝑚𝑆𝑆𝑅𝑅𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘,�𝑡𝑡−𝑚𝑚+𝑆𝑆𝑅𝑅𝑔𝑔𝑘𝑘
𝐷𝐷 +1�

𝑆𝑆𝑅𝑅𝑔𝑔𝑘𝑘
𝐷𝐷

𝑚𝑚=1
𝐾𝐾𝑔𝑔
𝑘𝑘=1���������������������

𝑆𝑆𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡𝑓𝑓𝑟𝑟 𝑡𝑡𝑟𝑟𝑚𝑚𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟𝑦𝑦

+ ∑ 𝐸𝐸𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆𝑧𝑧𝜔𝜔𝑔𝑔,(𝑡𝑡−𝑚𝑚+1)
𝑆𝑆𝑆𝑆𝑔𝑔𝐷𝐷

𝑚𝑚=1�������������
𝑆𝑆ℎ𝑓𝑓𝑡𝑡𝑇𝑇𝑜𝑜𝑤𝑤𝑔𝑔 𝑡𝑡𝑟𝑟𝑚𝑚𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟𝑦𝑦

+

𝑅𝑅𝑔𝑔𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡���������
𝑂𝑂𝑓𝑓𝑡𝑡𝑟𝑟𝑓𝑓𝑡𝑡 𝑤𝑤ℎ𝑓𝑓𝑔𝑔 𝑏𝑏𝑓𝑓𝑚𝑚𝑔𝑔𝑔𝑔 𝑓𝑓𝑟𝑟

 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡    
(18) 

 
ESS constraints include: logic to avoid charging and discharging at the same time (19)-

(20), the definition of the storage inventory level (21), storage limits including reserve 
(22)-(23). Since ESS can provide reserves (Fig. 25), the binary variable 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡 in (19)-(20) 
guarantees that the ESS is only charging or discharging at time period 𝑡𝑡. Without (19)-
(20), the optimization model could find a non-realistic solution where the ESS is charging 
and discharging simultaneously in order to provide more reserves from the ESS. 

 
�̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 ≤ (1 − 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡) ∙ �𝑋𝑋𝑠𝑠0 + 𝑋𝑋𝑠𝑠� ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (19) 
�̂�𝑒𝜔𝜔𝑠𝑠𝑡𝑡 ≤ 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡 ∙ �𝑋𝑋𝑠𝑠0 + 𝑋𝑋𝑠𝑠� ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (20) 
𝜙𝜙𝜔𝜔𝑠𝑠𝑡𝑡 = 𝜙𝜙𝜔𝜔𝑠𝑠,𝑡𝑡−1 + 𝜂𝜂𝑠𝑠�̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑒𝜔𝜔𝑠𝑠𝑡𝑡 ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (21) 
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𝜙𝜙𝜔𝜔𝑠𝑠𝑡𝑡 ≤ 𝐸𝐸𝑅𝑅𝑅𝑅𝑠𝑠(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) −∑ 𝑟𝑟𝜔𝜔𝑔𝑔𝑚𝑚−𝑡𝑡
𝑚𝑚=𝑡𝑡−1 ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (22) 

𝜙𝜙𝜔𝜔𝑠𝑠𝑡𝑡 ≥ ∑ 𝑟𝑟𝜔𝜔𝑔𝑔𝑚𝑚+𝑡𝑡
𝑚𝑚=𝑡𝑡−1 ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (23) 

∑ 𝑟𝑟𝜔𝜔𝑗𝑗𝑡𝑡+
𝑗𝑗∈𝒥𝒥 ≥ 𝑅𝑅𝜔𝜔𝑡𝑡+ ∀𝜔𝜔, 𝑡𝑡  (24) 

∑ 𝑟𝑟𝜔𝜔𝑗𝑗𝑡𝑡−
𝑗𝑗∈𝒥𝒥 ≥ 𝑅𝑅𝜔𝜔𝑡𝑡− ∀𝜔𝜔, 𝑡𝑡  (25) 
 
 
 

 
Fig. 26. Ramping constraints for ESS in the energy-based model. 
 
Flexibility requirements in the power system are represented by ramping constraints 

including reserve decisions. In order to guarantee that scheduled reserves are feasible 
to provide at 𝜏𝜏-min (e.g., 𝜏𝜏=5) using the energy-based formulation, it is necessary to 
consider the ramping capability at 𝜏𝜏-min. For instance, ramp capability limits imposed 
with (26)-(27) consider the reserve that thermal technologies can provide at 𝜏𝜏-min. ESS 
ramp capability limits (28)-(29) consider the charged energy in addition to the energy 
output (i.e., discharged energy), as in [91]. Fig. 26 shows the ramping constraints for ESS 
in the energy-based model for all possible operational conditions of the ESS going from 
time period 𝑡𝑡 − 1 to 𝑡𝑡. Notice that (28)-(29) allow ESS to switch from charging to 
discharging within the ramp limit, i.e., segment AB in Fig. 26. 

 
�𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 − 𝑒𝑒𝜔𝜔𝑔𝑔,𝑡𝑡−1� + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ 𝜏𝜏𝑅𝑅𝐻𝐻𝑔𝑔𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (26) 
−�𝑒𝑒𝜔𝜔𝑔𝑔𝑡𝑡 − 𝑒𝑒𝜔𝜔𝑔𝑔,𝑡𝑡−1� + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≤ 𝜏𝜏𝑅𝑅𝐷𝐷𝑔𝑔𝑢𝑢𝜔𝜔𝑔𝑔,𝑡𝑡−1 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (27) 
��̂�𝑒𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑒𝜔𝜔𝑠𝑠,𝑡𝑡−1� − ��̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1� + 𝑟𝑟𝜔𝜔𝑠𝑠𝑡𝑡+ ≤ 𝜏𝜏𝑅𝑅𝐻𝐻𝑠𝑠(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡 (28) 
��̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1� − ��̂�𝑒𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑒𝜔𝜔𝑠𝑠,𝑡𝑡−1� + 𝑟𝑟𝜔𝜔𝑠𝑠𝑡𝑡− ≤ 𝜏𝜏𝑅𝑅𝐷𝐷𝑠𝑠(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡 (29) 
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2.4.1.2Power-Based Formulation 

This section shows the GEP-UC equations in terms of power. However, some of the 
terms in these equations are naturally linked to energy. For instance, the objective 
function (30) includes the so-called calculated energy �̂�𝑒𝜔𝜔𝑗𝑗𝑡𝑡 to obtain the variable cost 
and CO2 emission cost. Equation (31) determines the energy output from the power 
output variables �̂�𝑝𝜔𝜔𝑗𝑗𝑡𝑡. Since the variable and CO2 costs are intrinsically based on energy, 
energy variables are then used in the objective function for both power- and energy-
based models. In addition, for ESS the charged energy �̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 is also determined using the 
charged power in (32). Notice that Λ = {𝑥𝑥,𝑝𝑝, �̂�𝑝, �̂�𝑒, 𝑐𝑐, �̂�𝑐, 𝑟𝑟+, 𝑟𝑟−,𝑢𝑢, 𝑦𝑦, 𝑧𝑧, 𝛿𝛿,𝜙𝜙 } corresponds 
to the set of decision variables in this model. 

 
min
Λ

∑ 𝐶𝐶𝑗𝑗𝐶𝐶𝑥𝑥𝑗𝑗𝑗𝑗∈𝒥𝒥 + ∑ 𝜋𝜋𝜔𝜔 ∑ �∑ �𝐶𝐶𝑗𝑗𝐿𝐿𝐿𝐿�̂�𝑒𝜔𝜔𝑗𝑗𝑡𝑡 + 𝐶𝐶𝑗𝑗𝑅𝑅+𝑟𝑟𝜔𝜔𝑗𝑗𝑡𝑡+ + 𝐶𝐶𝑗𝑗𝑅𝑅−𝑟𝑟𝜔𝜔𝑗𝑗𝑡𝑡− �𝑗𝑗∈𝒥𝒥 + ∑ �𝐶𝐶𝑔𝑔𝐸𝐸𝑅𝑅�̂�𝑒𝜔𝜔𝑔𝑔𝑡𝑡 +𝑔𝑔∈𝒢𝒢𝑡𝑡∈𝒯𝒯ω∈Ω

𝐶𝐶𝑔𝑔𝑁𝑁𝐿𝐿𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 + 𝐶𝐶𝑔𝑔𝑆𝑆𝑆𝑆𝑧𝑧𝜔𝜔𝑔𝑔𝑡𝑡 + ∑ 𝐶𝐶𝑔𝑔𝑘𝑘𝑆𝑆𝑅𝑅𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘𝑡𝑡𝑘𝑘∈𝒦𝒦𝑔𝑔 ��  
(30) 

�̂�𝑒𝜔𝜔𝑗𝑗𝑡𝑡 =
𝑟𝑟�𝜔𝜔𝜔𝜔𝑡𝑡+𝑟𝑟�𝜔𝜔𝜔𝜔,𝑡𝑡−1

2
∀𝜔𝜔, 𝑗𝑗, 𝑡𝑡  (31) 

�̂�𝑐𝜔𝜔𝑠𝑠𝑡𝑡 = 𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡+𝑐𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1
2

∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (32) 
 
Demand balance constraint (33) and power-flow transmission limits (34) also use the 

power output instead of energy output. The power trajectories, e.g., 𝐷𝐷𝜔𝜔𝑏𝑏𝑡𝑡𝑁𝑁  for demand, 
can be obtained and forecasted using the system operator real-time data. Then, the 
hourly energy can be calculated from the power trajectory using the area under the 
curve. Ref. [92] shows the relation between energy and power schedules. Reserve 
requirements (24)-(25) remain the same because they are already expressed in terms of 
power. 

 
∑ �̂�𝑝𝜔𝜔𝑗𝑗𝑡𝑡𝑗𝑗∈𝒥𝒥 − ∑ 𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡𝑠𝑠∈𝒮𝒮 = ∑ 𝐷𝐷𝜔𝜔𝑏𝑏𝑡𝑡𝑁𝑁

𝑏𝑏∈ℬ𝐷𝐷 ∀𝜔𝜔, 𝑡𝑡  
(33) 

−𝐼𝐼𝑙𝑙 ≤�Γ𝑙𝑙𝑗𝑗
𝐽𝐽 �̂�𝑝𝜔𝜔𝑗𝑗𝑡𝑡

𝑗𝑗∈𝒥𝒥

−�Γ𝑙𝑙𝑠𝑠𝑆𝑆𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡
𝑠𝑠∈𝒮𝒮

− � Γ𝑙𝑙𝑏𝑏𝐷𝐷𝜔𝜔𝑏𝑏𝑡𝑡𝑁𝑁

𝑏𝑏∈ℬ𝐷𝐷
≤ 𝐼𝐼𝑙𝑙    ∀𝑙𝑙,𝜔𝜔, 𝑡𝑡 

(34) 
 
In terms of the relationship between operational and investment decisions, thermal 

unit constraint (4) remains the same. However, constraints for ESS and vRES 
technologies change to (35)-(36) and (37), respectively. As in the energy-based model, 
(35)-(36) consider reserve variables, see Fig. 25. 

 
�̂�𝑝𝜔𝜔𝑠𝑠𝑡𝑡 − 𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡 + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ 𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠 ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (35) 

�̂�𝑝𝜔𝜔𝑠𝑠𝑡𝑡 − 𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡 − 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≥ −(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (36) 

�̂�𝑝𝜔𝜔𝑖𝑖𝑡𝑡 ≤ 𝑉𝑉𝜔𝜔𝑖𝑖𝑡𝑡𝑁𝑁 (𝑋𝑋𝑖𝑖0 + 𝑥𝑥𝑖𝑖) ∀𝜔𝜔, 𝑣𝑣, 𝑡𝑡  (37) 
 
Unit commitment constraints (8)-(12) do not change in the power-based formulation. 

Equations (38)-(39) limit the power output of thermal technologies. The total power 
output constraint is different depending whether it is a quick- or slow-start unit. Quick-
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start technologies 𝒢𝒢𝐹𝐹  are thermal generators that can startup/shutdown within one 
hour (i.e., 𝑆𝑆𝐻𝐻𝑔𝑔𝑘𝑘𝑆𝑆 = 𝑆𝑆𝐷𝐷𝑔𝑔𝑆𝑆 ≤ 1), while slow-start technologies 𝒢𝒢𝑆𝑆 are those with a SU/SD 
duration greater than one hour as well as a SU/SD capacity equal to the minimum power 
output (i.e., 𝑆𝑆𝐻𝐻𝑔𝑔 = 𝑆𝑆𝐷𝐷𝑔𝑔 = 𝑅𝑅𝑔𝑔). Therefore, the total power output of slow-start 
technologies considers SU/SD trajectories (41), whereas (40) for quick-start technologies 
does not. For a better understanding of the modeling of quick- and slow-start 
technologies, the reader is referred to [86], [89]. The formulation presented here is 
based on the tight and compact formulation proposed in [82]. Furthermore, Morales-
España et al. [86] has proven that the set of constraints (8)-(10) together with (38)-(41) 
is the tightest possible representation (i.e., convex hull) for the power-based model. 

 
 𝑝𝑝𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ �𝑅𝑅𝑔𝑔 − 𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 − �𝑅𝑅𝑔𝑔 − 𝑆𝑆𝐷𝐷𝑔𝑔�𝑧𝑧𝜔𝜔𝑔𝑔,𝑡𝑡+1 + �𝑆𝑆𝐻𝐻𝑔𝑔 − 𝑅𝑅𝑔𝑔�𝑦𝑦𝜔𝜔𝑔𝑔,𝑡𝑡+1 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡 (38) 
𝑝𝑝𝜔𝜔𝑔𝑔𝑡𝑡 − 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≥ 0      ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (39) 
�̂�𝑝𝜔𝜔𝑔𝑔𝑡𝑡 = 𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑦𝑦𝜔𝜔𝑔𝑔,𝑡𝑡+1� + 𝑝𝑝𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔 ∈ 𝒢𝒢𝐹𝐹 , 𝑡𝑡 (40) 

�̂�𝑝𝜔𝜔𝑔𝑔𝑡𝑡 = ∑ ∑ 𝑅𝑅𝑔𝑔𝑘𝑘𝑚𝑚𝑆𝑆𝑅𝑅𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘,�𝑡𝑡−𝑚𝑚+𝑆𝑆𝑅𝑅𝑔𝑔𝑘𝑘
𝐷𝐷 +2�

𝑆𝑆𝑅𝑅𝑔𝑔𝑘𝑘
𝐷𝐷

𝑚𝑚=1
𝐾𝐾𝑔𝑔
𝑘𝑘=1���������������������

𝑆𝑆𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡𝑓𝑓𝑟𝑟 𝑡𝑡𝑟𝑟𝑚𝑚𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟𝑦𝑦

+ ∑ 𝑅𝑅𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆𝑧𝑧𝜔𝜔𝑔𝑔,(𝑡𝑡−𝑚𝑚+2)
𝑆𝑆𝑆𝑆𝑔𝑔𝐷𝐷+1
𝑚𝑚=2���������������
𝑆𝑆ℎ𝑓𝑓𝑡𝑡𝑇𝑇𝑜𝑜𝑤𝑤𝑔𝑔 𝑡𝑡𝑟𝑟𝑚𝑚𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟𝑦𝑦

+

𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 + 𝑦𝑦𝜔𝜔𝑔𝑔,𝑡𝑡+1� + 𝑝𝑝𝜔𝜔𝑔𝑔𝑡𝑡�����������������
𝑂𝑂𝑓𝑓𝑡𝑡𝑟𝑟𝑓𝑓𝑡𝑡 𝑤𝑤ℎ𝑓𝑓𝑔𝑔 𝑏𝑏𝑓𝑓𝑚𝑚𝑔𝑔𝑔𝑔 𝑓𝑓𝑟𝑟

∀𝜔𝜔,𝑔𝑔 ∈ 𝒢𝒢𝑆𝑆, 𝑡𝑡    
(41) 

 
ESS constraints for storage level (21) and storage level limits including reserve (22)-

(23) continue the same. Nevertheless, the logic to avoid charging and discharging at the 
same time (42)-(43) is updated to consider the power output and charged power. 

 
𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡 ≤ (1 − 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡) ∙ �𝑋𝑋𝑠𝑠0 + 𝑋𝑋𝑠𝑠� ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (42) 
�̂�𝑝𝜔𝜔𝑠𝑠𝑡𝑡 ≤ 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡 ∙ �𝑋𝑋𝑠𝑠0 + 𝑋𝑋𝑠𝑠� ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (43) 

One of the main advantages of power-based formulation is that it allows to describe a 
more detailed set of constraints to represent the flexibility requirements, which are 
described in terms of power instead of energy. The proposed power-based equations in 
[82] ensure that reserves can be provided at any time within the hour by guaranteeing 
that the reserve does not exceed the ramp-capability at 𝜏𝜏-min (e.g., 𝜏𝜏=5 min) and power-
capacity limits at the end of the hour (i.e., 60 min). Therefore, (44)-(45) guarantee that 
𝜏𝜏-min ramp capability is ensured for thermal technologies, while (46)-(47) guarantee the 
power- capacity limit for both 𝜏𝜏-min and at the end of the hour. These constraints have 
been defined for thermal generation units in [82]. However, ramping constraints in 
power-based models have not been defined for ESS in the literature before. This paper 
then proposes a set of constraints for flexibility requirements in power-based models. 
Fig. 27 shows different operating points and reserves for ESS at 𝜏𝜏-min within hour 𝑡𝑡. 
Here, segments EA and AF must be below the ramp-capability limits 𝜏𝜏𝑅𝑅𝐻𝐻𝑠𝑠 and 𝜏𝜏𝑅𝑅𝐷𝐷𝑠𝑠, as 
well as points E and F must be within the maximum and minimum power-capacity limit. 
Therefore, constraints (48)-(51) guarantee these conditions for all operating points of 
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ESS in Fig. 27. Notice, that here it is important to highlight that (42)-(43) avoid 
simultaneous charging and discharging. 

 

 
𝜏𝜏�𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡−𝑟𝑟𝜔𝜔𝑔𝑔,𝑡𝑡−1�

60
+ 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ 𝜏𝜏𝑅𝑅𝐻𝐻𝑔𝑔𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (44) 

− 𝜏𝜏�𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡−𝑟𝑟𝜔𝜔𝑔𝑔,𝑡𝑡−1�
60

+ 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≤ 𝜏𝜏𝑅𝑅𝐷𝐷𝑔𝑔𝑢𝑢𝜔𝜔𝑔𝑔,𝑡𝑡−1 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (45) 

𝜏𝜏𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+(60−𝜏𝜏)𝑟𝑟𝜔𝜔𝑔𝑔,𝑡𝑡−1

60
+ 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+ ≤ �𝑅𝑅𝑔𝑔 − 𝑅𝑅𝑔𝑔�𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡  ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡   (46) 

𝜏𝜏𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡+(60−𝜏𝜏)𝑟𝑟𝜔𝜔𝑔𝑔,𝑡𝑡−1

60
− 𝑟𝑟𝜔𝜔𝑔𝑔𝑡𝑡− ≥ 0 ∀𝜔𝜔,𝑔𝑔, 𝑡𝑡  (47) 

𝜏𝜏��̂�𝑝𝜔𝜔𝑠𝑠𝑡𝑡 − �̂�𝑝𝜔𝜔𝑠𝑠,𝑡𝑡−1�
60

−
𝜏𝜏�𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡 − 𝑐𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1�

60
+ 𝑟𝑟𝜔𝜔𝑠𝑠𝑡𝑡+ ≤ 𝜏𝜏𝑅𝑅𝐻𝐻𝑠𝑠(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  

(48) 

𝜏𝜏(𝑟𝑟�𝜔𝜔𝑠𝑠𝑡𝑡−𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡)+(60−𝜏𝜏)�𝑟𝑟�𝜔𝜔𝑠𝑠,𝑡𝑡−1−𝑐𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1�
60

+ 𝑟𝑟𝜔𝜔𝑠𝑠𝑡𝑡+ ≤ 𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠 ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (49) 

𝜏𝜏�𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡−𝑐𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1�
60

− 𝜏𝜏�𝑟𝑟�𝜔𝜔𝑠𝑠𝑡𝑡−𝑟𝑟�𝜔𝜔𝑠𝑠,𝑡𝑡−1�
60

+ 𝑟𝑟𝜔𝜔𝑠𝑠𝑡𝑡− ≤ 𝜏𝜏𝑅𝑅𝐷𝐷𝑠𝑠(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (50) 

𝜏𝜏(𝑟𝑟�𝜔𝜔𝑠𝑠𝑡𝑡−𝑐𝑐𝜔𝜔𝑠𝑠𝑡𝑡)+(60−𝜏𝜏)�𝑟𝑟�𝜔𝜔𝑠𝑠,𝑡𝑡−1−𝑐𝑐𝜔𝜔𝑠𝑠,𝑡𝑡−1�
60

− 𝑟𝑟𝜔𝜔𝑠𝑠𝑡𝑡− ≥ −(𝑋𝑋𝑠𝑠0 + 𝑥𝑥𝑠𝑠) ∀𝜔𝜔, 𝑠𝑠, 𝑡𝑡  (51) 

 

 
Fig. 27. Ramping constraints for ESS in the power-based model. 
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2.4.2 System Flexibility Evaluation 

As mentioned in the previous section, two main formulations are analyzed for GEP: the 
traditional energy-based (EB), and the power-based formulation (PB). We also analyze 
the traditional energy-based using SU/SD trajectories (EBs). ¡Error! No se encuentra el 
origen de la referencia. shows a summary with all the equations that define these 
models. All models include an hourly UC (either energy- or power-based) in order to 
consider operating constraints, involving those related to the power system flexibility 
(i.e., ramping and reserve constraints). In order to measure the quality of the obtained 
solution under real-time flexibility requirements, we carry out an evaluation of 
investment and operational decisions through a simulation using the same scenarios as 
in the GEP-UC hourly optimization (in-sample simulation). This evaluation allows us to 
establish the problems associated to each formulation rather than those associated to 
the uncertainty representation by itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 28. Stage sequence for integer (top) and semi-relaxed (bottom) approaches. 
 
 
 The complete procedure to calculate investment decisions and ex-post real-time 
evaluation is shown in Fig. 28 (top). During stage 1, the investment and hourly UC 
schedule are optimized solving the formulations shown in Section 2.4.1Then, 
investment, commitment, and reserve decisions are fixed. Stage 2 tests the results 
through a real-time simulation model, using a 5-min optimal dispatch (emulating real-
time markets as in [80]) in order to evaluate the GEP-UC solution. Dispatch decisions 
(e.g., production, charge/discharge) obtained in stage 2 are called redispatches, allowing 
us to evaluate the deviations with respect to the stage 1. This is called the integer 
approach. In addition, we proposed a semi-relaxed approach for the power-based 

Stage 1 (Integer): 
Investment + hourly UC 
schedule optimization 

Stage 2: 5-min 
dispatch simulation 

Fix investment, UC, and 

Stage 1a: Investment 
(Integer)+ hourly UC 
schedule (Relaxed) 

optimization 

Integer Approach 

Semi-relaxed Approach for Power-based Formulation 

Stage 1b (Integer): 
hourly UC schedule 

optimization 
Stage 2: 5-min 

dispatch simulation 
Fix investment, UC, and 

Fix 
investment 
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formulation, which is shown in Fig. 28 (bottom). Here we split stage 1 in two. First, the 
stage 1a solves the power-based formulation considering integer investment decisions 
and continuous UC decisions (𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡, 𝑦𝑦𝜔𝜔𝑔𝑔𝑡𝑡, 𝑧𝑧𝜔𝜔𝑔𝑔𝑡𝑡). This approximation allows to solve the 
GEP problem much faster. Then investment decisions are fixed in stage 1b, where the 
power-based formulation is solved considering integer UC decisions. Once again, 
investment, unit commitment, and reserve decisions are fixed to simulate a 5-min 
optimal dispatch. 

2.4.3  Case Studies 

To evaluate the performance of the different approaches, we use two case studies: a 
modified IEEE 118-bus test system and a stylized Dutch power system in target year 
2040. Input data for both case studies is available online at [93], including the 5-min 
demand and renewable production profiles. Both case studies are solved considering a 
green-field investment approach (i.e., no initial capacity) for thermal generation and ESS 
investment, while the vRES capacity is predefined. 

 
The modified IEEE 118-bus test system is described in Morales-España [94] for a time 

span of 24 h. This system was originally conceived for UC problems and it has 118 buses, 
186 transmission lines, 91 loads, 54 slow-start thermal technologies, 10 quick-start 
technologies, and three buses with wind production. Nevertheless, we adapt this case 
study for GEP problems. Thermal unit investments are allowed in buses where there was 
a unit connected in the initial UC problem. In addition, ESS investment decisions are 
available in three types of technologies (PSH, CAES, and Li-ION) for buses with renewable 
production. The total (5-min) load average is 3578.6MW, it has a peak of 5117.5MW and 
a minimum of 1435.4MW. 

 
The stylized Dutch system case study for year 2040 is mainly based on the information 

available in the Ten Year Network Development Plan 2018 [95] (e.g., hourly demand 
profile, renewable capacity, technical characteristics and available technologies). 
However, the wind and solar profiles were taken from [42], [43] since this information 
is not available in [95]. Instead of solving 8760 h for the whole year, we have selected 
four representative weeks using the proposed method in [61] and k-medoids clustering 
technique [96]. Other authors [60], [97] have proposed different approaches to select 
the representative periods (e.g., weeks or days) that are compatible with the proposed 
GEP-UC models in this paper. Each representative week is considered as one scenario in 
the optimization problem, and the scenario probability is obtained from the clustering 
process. For investment decisions, four different thermal generation technologies are 
considered, Combined Heat and Power (CHP), combined cycle gas turbine (CCGT), open 
cycle gas turbine (OCGT), and Light Oil (Oil). Moreover, three ESS (PSH, CAES, Li-ION) 
technologies are considered for investment decisions. 

 
For each case study, four different models are implemented: traditional energy-based 

(EB), energy-based including SU/SD power trajectories (EBs), the proposed power-based 
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formulation (PB), and the semi-relaxed power-based formulation (SR-PB). Table VIII 
shows the summary with all the implemented models. All models consider 𝜏𝜏 = 5min for 
constraints associated to flexibility constraints. All optimizations were carried out using 
Gurobi 8.1 on an Intel®-Core™ i7-4770 (64-bit) 3.4-GHz personal computer with 16GB of 
RAM memory. The problems are solved until they reach an optimality tolerance of 0.1%. 

 
 

Table VIII: GEP-UC Models 

 
Equations EB EBs PB SR-PB 

Objective function (1) (30) 
System constraints (2)-(25) (24)-(25), (31)-(34) 

Investment constraints (4),(5)-(6),(7) (4), (35)-(36),(37) 
UC constraints                    (8)-(12) 

Thermal unit constraints (13)-(16) (38)-(39) 
Total output thermal 

technologies (17) (18) (40)-(41) 

constraints (19)-(23) (21)-(23),(43)-(42) 
Constraints for flexibility 
requirements (𝜏𝜏 = 5min) (26)-(29) (44)-(51) 

Integer  
variables 

𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡, 𝑦𝑦𝜔𝜔𝑔𝑔𝑡𝑡 , 𝑧𝑧𝜔𝜔𝑔𝑔𝑡𝑡, 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡, 𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘𝑡𝑡, 𝑥𝑥𝑗𝑗  
Stage 1a: 𝑥𝑥𝑗𝑗  

Stage 1b: 𝑢𝑢𝜔𝜔𝑔𝑔𝑡𝑡, 
𝑦𝑦𝜔𝜔𝑔𝑔𝑡𝑡 , 𝑧𝑧𝜔𝜔𝑔𝑔𝑡𝑡, 𝛾𝛾𝜔𝜔𝑠𝑠𝑡𝑡, 𝛿𝛿𝜔𝜔𝑔𝑔𝑘𝑘𝑡𝑡 

 

2.4.4 Results 

2.4.4.1Modified IEEE 118-bus System 

Table IX shows the main results for each model. The total investment cost (ESS + 
Thermal) is higher in the classic EB model than the one obtained with the PB model. 
Generally, increasing the investments lowers operating cost. Nevertheless, here we 
obtain a counterintuitive result. Even though the classic EB model invests more (6%), 
the operating cost is worse than the one in the PB model (15%). Moreover, the CO2 
emissions and curtailment are also higher in the classic EB model, despite its higher 
capacity in clean ESS and lower capacity in thermal technologies.  

 
This is also a counterintuitive result, because at a first glance, less thermal generation 

should pollute less, and more storage should allocate more renewables. However, this 
result is related to how the technology mix is selected in each model. Therefore, it is not 
only a matter of how much the model invests, it is also a matter of how the technology 
mix is selected, see Table X. 
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For instance, although the total coal capacity is higher in the proposed PB model, the 

actual total coal production is lower (7%) than the one in the classic EB model, see Table 
XI. This is compensated by a higher use of wind, gas (that have less CO2 emission factor) 
and oil, which overall results in less CO2 emissions. As mentioned in Section 2.4.1.2 the 
PB model equations allow to schedule the thermal technologies in a way that correctly 
represents the requirements and actual availability of system’s flexibility, such as the 
load ramps. The results show the benefits of accurately considering the flexibility 
requirements and of correctly modelling the flexibility capabilities of the system by 
modelling in terms of power instead of energy. 

 
TABLE IX 

IEEE 118-bus System: Performance for each formulation 

Result EB EBs PB SR-PB 

St
ag

e 
1 

Total Cost [M$] 10.15 9.29 8.94 8.96† 
ESS Invest Cost [M$] 0.43 0.35 0.19 0.17 

Therm. Invest Cost [M$] 1.01 1.42 1.17 1.24 

Operating Cost [M$] 8.71 7.52 7.58 7.55† 

CO2 emissions [ton] 63.11 53.06 53.98 53.74 

Curtailment [%] 5.76 4.18 0.73 0.70 

CPU Time [s] 10717 6767 4478 500 

St
ag

e 
2 

Operating Cost [M$] 8.22 7.53 7.58 7.55 

Total Cost [M$] 9.66 9.30 8.94 8.96 

CO2 emissions [ton] 59.31 52.48 53.95 53.71 

Curtailment [%] 0.00 0.00 0.60 0.62 
† Values from Stage 1b 

TABLE X 
Technology investment decisions [MW] 

Technology EB EBs PB SR-PB 
PSH 1250 1000 500 441 

CAES 0 0 0 0 
Li-ION 150 150 150 150 
GAS 360 600 420 480 

COAL 4380 6080 5030 5330 
OIL 50 100 100 100 

TABLE XI 
Technology production decisions [MWh] 

Technology EB EBs PB SR-PB 
PSH 7352 5944 2449 2019 



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          71 

 

CAES 0 0 0 0 
Li-ION 1053 1003 1035 1033 
GAS 494 2719 2482 2680 

COAL 67540 63939 62913 62570 
OIL 52 900 950 900 

WIND 18880 19196 19887 20018 
 

The EBs model improves the classic EB model by including the SU/SD power-based 
ramps. In stage 1, the total cost in the EBs model is 8.5% lower than the classic EB model. 
However, it is still 4% higher than the PB model and with more curtailment (5.7 times). 
The EBs technology mix is also different, as it invests more in PHS and coal (Table X). And 
yet, the PB model allocates more wind with less ESS, see Table XI. Therefore, the PB 
model invests more efficiently due to the more accurate representation of flexibility 
requirements and capabilities of the power system. 

 
Regarding the CPU time, the PB model is faster than its energy counterparts (2.4 and 

1.5 times respectively). Nevertheless, for large-scale investment decision problems, the 
integer nature of the UC variables especially could make the problem intractable to 
solve. Therefore, the proposed SR-PB models aims at overcoming this situation. For 
instance, it solves the problem 9 times faster than the PB model and with only a 0.2% 
difference in the objective function. Moreover, the difference in the CO2 emissions is 
only 0.4%. The main difference appears in the curtailment (90%) due to the increase in 
the investment made by the SR-PB that allows to reduce the operating cost by increasing 
wind production. When the SR-PB and the EB are compared, it may be concluded that 
the even the semi-relaxed version of the power-based model (i.e., SR-PB) shows better 
performance than the discrete version of the energy-based models (i.e., EB and EBs). In 
other words, the SR-PB model has a lower total cost than the EB model, investing and 
operating with lower cost, while simultaneously solving 21+ times faster. 
 

The results in Table IX for the stage 2 are also showing interesting information: 
comparing the operating cost between stage 1 and 2, the classic EB shows a decrease of 
6%, while in the other models remain almost the same. Moreover, the curtailment is 
also reduced from stage 1 to stage 2 in both energy-based models, while it remains 
almost the same in the power-based models. These results suggest that the obtained 
schedule in stage 1 with energy-based models leads to more redispatches in the 
technologies in stage 2. Fig. 29 illustrates this situation with the deviation with respect 
to the hourly thermal production obtained in stage 2 for each model.  

 
In both energy-based models, downward deviations are higher than upward 

deviations, which explains why the operating cost is reduced from stage 1 to stage 2 in 
the classic EB model as well as the reduction on the curtailment for both energy-based 
models. The power-based models show deviations in both directions lower than 3%, 
which means that the hourly schedule (stage 1) is better fitted for the 5-min real-time 
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operation (stage 2). This high deviation of the energy-based models is due to its intrinsic 
incapability to accurately represent the flexibility needs and capabilities. These 
conclusions are aligned with those in [9] where different case studies where carried out 
disregarding investment decisions. 

 

 
Fig. 29. Stage 2 deviation in scheduled thermal output. 

 
 

TABLE XII 
IEEE 118-bus System: Stage 2 – sensitivity results 

Result EB EBs PB SR-
PB 

St
ag

e 
2 

Operating Cost 
[M$] 

8.35 7.66 7.60 7.55 

Total Cost [M$] 9.79 9.43 8.96 8.96 
CO2 emissions 
[ton] 

59.89 52.71 54.04 53.73 

Curtailment 
[%] 

1.99 0.98 0.62 0.13 

 
 

Notice that ESS plays an important role in the reschedules made in stage 2. Therefore, 
we run a sensitivity case in which the State-of-Charge (SoC) at the end of each hour is a 
lower bound for the ESS in the stage 2. This limits the reschedules made in this stage, 
increasing the operating cost.  

 
Table XII shows that situation, where with this additional constraint the operating 

cost, CO2 emissions and curtailment are higher than in the base case. It is important to 
highlight that in this sensitivity case energy-type models cannot reduce the curtailment 
to zero as it was in the base case. Therefore, the flexibility provided by the ESS was partly 
responsible for the reduction of the curtailment between stage 1 and 2 in this type of 
models. Fig. 30 shows the SoC in the batteries during stage 2 for the base case and the 
sensitivity case. 

The difference between both results in each model shows how the energy-type 
models were taking advantage of the ESS to reduce the operating cost in stage 2 at the 
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cost of more rescheduling in the thermal technologies. 

 
Fig. 30. Battery SoC in Stage 2 obtained for each model. 

2.4.4.2 Stylized Dutch System 

Table XIII shows the results for a stylized Dutch power system. The main conclusions 
drawn from the previous case study remain valid. That is, the classic EB model obtains 
the most expensive investment, and the operating cost is also the highest, while also 
resulting in the highest CO2 emissions. The amount of ESS invested in the EB model is 
also the highest, hence allowing it to obtain less curtailment than PB in the stage 2. 
Nevertheless, still the PB model results in the lowest total cost in both stages and solves 
the GEP problem faster than EB. In addition, the SR-PB further reduces the CPU time 
without losing accuracy in the results. Therefore, modeling flexibility requirements with 
the PB model leads to a better solution than the classic EB model. In addition to the base 
case shown in Table XIII, Table XIV shows a sensitivity where ramp capabilities of thermal 
technologies are twice than before, i.e., thermal technologies are now much more 
flexible. As the flexibility of the thermal resources increases, the difference between 
energy-based and power-based models decreases. For instance, the difference between 
the EB the PB models changes from 7.4% to 4.3%. Therefore, if the power system does 
not have ramp problems, i.e., flexibility is not a problem in general, the difference 
between energy-based and power-based models is less significant. However, if flexibility 
is a limited resource and needs to be correctly managed, then the power-based models 
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are the right option to obtain the capacity expansion planning for the system. 
 

TABLE XIII 
Stylized Dutch System: Performance for each formulation 
Result EB EBs PB SR-PB 

St
ag

e 
1 

Total Cost [M$] 73.18 70.39 68.14 68.16† 
ESS Invest Cost [M$] 13.47 11.15 10.53 10.88 

Therm. Invest Cost [M$] 13.79 14.12 13.43 13.47 
Operating Cost [M$] 45.92 45.12 44.18 43.81† 

CO2 emissions [kton] 112.10 98.06 89.46 88.77 

Curtailment [%] 44.72 45.47 45.46 45.34 
CPU Time [s] 571 161 131 60 

St
ag

e 
2 

Operating Cost [M$] 45.76 46.61 44.90 44.52 

Total Cost [M$] 73.02 71.88 68.86 68.87 

CO2 emissions [kton] 107.73 100.01 94.29 93.44 
Curtailment [%] 47.88 48.35 48.34 45.39 

† Values from Stage 1b 
TABLE XIV 

Stylized Dutch System: Sensitivity to Ramp Capacity 
Result EB EBs PB SR-PB 

St
ag

e 
1 

Total Cost [M$] 70.51 67.93 67.60 67.61† 
ESS Invest Cost [M$] 13.35 10.97 10.66 10.74 
Therm. Invest Cost [M$] 13.47 13.47 13.43 13.47 
Operating Cost [M$] 43.69 43.49 43.51 43.40† 
CO2 emissions [kton] 103.10 90.84 88.46 88.17 
Curtailment [%] 44.32 45.22 45.16 45.19 
CPU Time [s] 142 130 100 43 

St
ag

e 
2 Operating Cost [M$] 44.37 45.92 44.25 44.21 

Total Cost [M$] 71.19 70.36 68.34 68.42 
CO2 emissions [kton] 100.76 94.35 93.07 93.07 
Curtailment [%] 44.62 45.30 45.24 45.28 

† Values from Stage 1b 

2.4.5 Conclusions 

This paper proposes a power-based model to determine the GEP, including energy 
storage technologies. The proposed power-based model uses the installed investments 
more efficiently and more effectively as 1) it represents the reality of flexibility 
requirements of the power system more adequately, and 2) it adequately exploits the 
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flexibility capabilities of the system. That is, the decisions made with the power-based 
model simultaneously yield lower investment costs, operating cost, CO2 emissions, and 
renewable curtailment with respect to the energy-based model. This is mainly because 
the energy-based model overestimates flexibility capabilities, failing to capture the 
flexibility requirements such as load and vRES ramps even in a deterministic approach 
(i.e., without uncertainty on demand, or renewable production). Moreover, the 
advantages of the power-based approach could become much more significant 
considering uncertainty [9]. 

 
 Therefore, correctly modeling the system flexibility changes the optimal expansion 

capacity decisions. For instance, the power-based model obtains less total investment 
(6-12%) because it is more accurate in the representation of ramping characteristics for 
generation resources (e.g., thermal technologies and ESS), which leads to less operating 
cost (2-8%) in the real-time validation. In addition, the power-based model has 
computational advantages in terms of CPU time. The results show that the power-based 
model is 2 to 4 times faster than the energy-based model. We also have demonstrated 
that the semi-relaxed power-based model is even faster (10 to 21 times) without losing 
accuracy in the results compared with the non-relaxed power-based model (less than 
0.2% objective function error). This is relevant for applications with large-scale long-
term capacity expansion planning problems where relaxed models are more often used 
due to computational power limitations. 

 
The results show an important insight for ISOs because, even without uncertainty, the 

current energy-based models impose more rescheduling in the real-time operation than 
the power-based models. For planning authorities this is also important because 
decisions made with power-based models lead to a generation technology mix that is 
better adapted to real-time system operation. 

 
Finally, the proposed power-based UC model relies on available data in terms of 

power trajectories instead of energy trajectories, i.e., demand and renewable profiles. 
Forecasting power profiles, thus having higher quality on ramping information, is an 
interesting topic that could be addressed in future research. 
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2.5 Storage Allocation and Investment Optimization for Transmission 
Constrained Networks Considering Losses and High Renewable 
Penetration 

As renewable energy penetration increases on a grid-scale, the issues of 
intermittency and price control continue to grow. One method tackling these issues is 
relying on large-scale storage technologies to provide grid flexibility [98] . Previous 
studies have investigated using large-scale storage to perform services like energy 
arbitrage, power regulation and peak shaving [99]. But planning such solutions goes 
beyond simply determining the required storage capacity. Designing a storage network 
on a grid-scale requires examining capacity requirements, resource allocation, and grid-
specific properties . A common method used to account for this is the optimal power 
flow (OPF) framework. Studies [100]–[102] have explored adding charge and discharge 
dynamics to AC OPF functions in order to explore the effects of energy trading, demand 
reduction and power regulation. Others e.g. [103], [104] have looked at expanding this 
type of modelling to include multiperiod storage location optimization. Studies such as 
[105] have also used AC OPF models to study the economic benefits realized using 
energy storage for emissions reductions and/or congestion relief. 

  
In general, OPF Problems are nonconvex and NP hard making them difficult to solve. 

Therefore, DC OPF linear approximations [106] as opposed to the AC OPF models 
mentioned above, have been used extensively to explore optimal storage siting 
problems for both customary and renewable energy grids. Much attention has been 
brought to using DC OPF Functions to fluctuation challenges associated with high 
renewable penetration [107], [108]. These models have also been used to 
understanding how storage can be used as a risk mitigating measure with regard to the 
uncertainty of renewable generation [109], [110].   

 
The choice of model for this study was based on the following: General 

transportation models only consider Kirchhoff´s First Law of energy/power conservation 
which is not a viable means of planning technology expansion. Contrarily DC power flow 
models (DCPF) consider both Kirchhoff’s First Law and a linearized version of his second 
law to account for voltage balance. These models allow users to approximately 
represent losses but not stability considerations in transmission. This makes them 
suitable for medium and long-term planning for investment in and allocation of new 
elements in the power grid (i.e. generators, transmission lines, transformers, etc.) [111]. 
Because this study is not concerned with exploring voltage and stability problems 
associated with grid operation, building upon the DC OPF-based model in[98] was 
sufficient. This allows for increased computational tractability that would be lost had 
this model been expanded to an AC power flow representation. Authors in [98] 
expanded on the DC OPF-based storage allocation formulas to include a portfolio of 
storage technologies operating on different time-scales into the OPF-based siting and 
dispatch problems. This was used to optimally allocate and invest in storage in both 
congested and uncongested networks. 
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Congestion can strongly impact the sizing and siting of storage facilities by 

preventing proper power distribution, leading to outages or increased system stress. 
Losses in power flow throughout a network can similarly affect grid reliability by 
preventing the right amount of power from reaching demand centres. Studies such as   
[112], [113] have explored how energy storage technologies can improve overall grid 
efficiencies by relieving congestion, stabilizing power and minimizing transmission and 
battery round-trip losses. While this is crucial in effectively integrating distributed 
storage solutions, it neglects to give a system planner an optimal network-level strategy 
for designing new storage projects. Ignoring line losses may initially reduce costs but can 
lead to expensive investment adjustments down the road [114]. This work expands on 
[98]   to account for both network congestion and transmission losses. A linearized 
approximation of ohmic losses was adapted to do this [115]. By investigating physical 
constraints in a transmission network, the impact that storage expansion will have on 
grids operating with non-dispatchable power can be better analysed. 

 
The remainder of this paper is organized as follows. Section 2.5.1 provides the 

mathematical formulation used for optimizing storage capacity and siting across a 
transmission-constrained network considering ohmic losses. Section 2.5.2 includes 
several case studies that utilize the modelling framework for an IEEE benchmark test 
system to analyse how losses, congestion and varying degrees of wind generation drive 
allocation and investment decisions, as well as how they influence each other. 
Conclusions and considerations for future research are presented in Section 2.5.3. 

2.5.1 Problem Formulation 

In this section the mathematical formulation for the optimal storage allocation 
problem over a transmission constrained network is explained. Generally, the model is 
an extension of the OPF storage problem. It includes multiple options for storage 
technologies, creating a larger problem size. To increase the tractability of the problem 
a linearized DC OPF approximation was adopted. Section 2.5.1.1 fixes the total storage 
capacity available for the mix of technologies and optimizes the allocation of these 
resources throughout the network while considering linearized ohmic losses. Section 
2.5.1.2 breaks down how the linearized approximation and subsequently its related 
terms and constraints are formulated. Section 2.5.1.3 further extends the model to 
include investment costs for installing storage capacity. Lastly, Section 2.5.1.4 outlines 
three additional storage metrics that were created using parameters from Sections 
2.5.1.1 to Section 2.5.1.3 to better analyse the model results.  
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2.5.1.1 Storage Allocation with Losses Model 

Consider a network with a set of buses 𝑁𝑁 ≔ {1, … ,𝑁𝑁} and define n as the index 
referring to this set. The set of different storage technologies available in the network 
can be denoted by 𝐽𝐽 ≔ {1, … , 𝐽𝐽} and is indexed with j throughout the model. The set of 
time intervals is defined as 𝑇𝑇 ≔ {1, … ,𝑇𝑇} and indexed with t. In addition, consider the 
set 𝐾𝐾 ∶= {1, … ,𝐾𝐾} of linear approximation segments used in Section 2.5.1.2 to form a 
piecewise linear approximation of transmission losses. The decision variables used 
throughout the DC OPF storage optimization model comprise the set Ω
∶= � 𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡), 𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡), 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡), 𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡),𝑘𝑘𝑗𝑗𝑔𝑔, 𝛿𝛿𝑔𝑔(𝑡𝑡),∆𝑔𝑔𝑜𝑜(𝑡𝑡),∆𝑔𝑔𝑜𝑜′ (𝑡𝑡)� for all technologies𝑗𝑗 ∈ 𝐽𝐽, all 
nodes 𝑛𝑛 ∈ 𝑁𝑁 and all segments 𝑘𝑘 ∈ 𝐾𝐾 during all time intervals 𝑡𝑡 ∈ 𝑇𝑇. The decision 
variables are defined as follows: 𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡) is the generation from thermal units, 𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡) and 
 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡)correspond to the charging and discharging rates of each storage 
technology, 𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡) represents the storage level, 𝑘𝑘𝑗𝑗𝑔𝑔 represents the installed storage 
capacity, 𝛿𝛿𝑔𝑔(𝑡𝑡) corresponds to the voltage angle at a node, ∆𝑔𝑔𝑜𝑜(𝑡𝑡) represents the 
difference in voltage angles between two buses and time t for a particular 
approximation segment, and ∆𝑔𝑔𝑜𝑜′ (𝑡𝑡) represents the square of this difference. 

 
The objective function of the model calculates the total system costs:   

min
Ω

∑ �∑ 𝐼𝐼𝑔𝑔
𝑔𝑔�𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡), 𝑡𝑡� + ∑ 𝐼𝐼𝑗𝑗𝑔𝑔𝑇𝑇 �𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡), 𝑡𝑡�𝑔𝑔∈𝑁𝑁,𝑗𝑗∈𝐽𝐽𝑔𝑔∈𝐺𝐺 � 𝑡𝑡∈𝑇𝑇   (1)  

 

This objective is comprised of the production cost function, 𝐼𝐼𝑔𝑔
𝑔𝑔�𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡), 𝑡𝑡�

∶= 𝐶𝐶𝑔𝑔
𝑔𝑔1(𝑡𝑡)𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡) + 𝐶𝐶𝑔𝑔
𝑔𝑔2(𝑡𝑡) �𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡)�
2
 and the discharging costs 𝐼𝐼𝑗𝑗𝑔𝑔𝑇𝑇 �𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡), 𝑡𝑡�

∶= 𝐶𝐶𝑗𝑗𝑔𝑔𝑇𝑇1(𝑡𝑡)𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡) + 𝐶𝐶𝑗𝑗𝑔𝑔𝑇𝑇2(𝑡𝑡) �𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡)�
2
 which together represent the fixed and variable costs 

associated with network storage. 𝐶𝐶𝑔𝑔
𝑔𝑔1(𝑡𝑡) and 𝐶𝐶𝑔𝑔

𝑔𝑔2 are the linear and quadratic 
production cost coefficients respectively. Similarly, 𝐶𝐶𝑗𝑗𝑔𝑔𝑇𝑇1(𝑡𝑡) and 𝐶𝐶𝑗𝑗𝑔𝑔𝑇𝑇2(𝑡𝑡)  represent the 
linear and quadratic discharging cost coefficients. For thermal generation units, convex 
quadratic cost functions are commonly used in unit commitment formulations [116]. 
While this study does not take unit commitment into consideration, the solution of such 
a formulation results in a model that is straightforward using conic optimization 
algorithms. For this reason, it was adopted here. Cost functions associated with charging 
and discharged stored power have been included by other authors in previous studies 
[100]–[117]. These allow the model to take into account optimal system deployment as 
well as allocation and investment. 

 

Before the constraints are explained, some useful parameters will be defined: 

𝜂𝜂𝑗𝑗𝑐𝑐  Charging efficiency of 
technologies 
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𝜂𝜂𝑗𝑗𝑇𝑇 Discharging efficiency of 
technologies 

Δ𝑡𝑡 Duration of time step 

𝑅𝑅𝑗𝑗𝑐𝑐 Maximum charging capacity 

𝑅𝑅𝑗𝑗𝑇𝑇 Maximum discharging capacity 

𝑅𝑅𝑔𝑔𝑜𝑜𝑚𝑚𝑔𝑔 Minimum thermal power output 

𝑅𝑅𝑔𝑔𝑜𝑜𝑚𝑚𝑚𝑚  Maximum thermal power output 

+𝑅𝑅𝑅𝑅𝑔𝑔;  −𝑅𝑅𝑅𝑅𝑔𝑔 Upper and lower ramp rate limits 

𝑊𝑊𝑔𝑔(𝑡𝑡) Total wind generation 

𝑇𝑇𝐶𝐶𝑔𝑔𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚 Maximum line transmission 
capacity 

𝐺𝐺𝑡𝑡𝑔𝑔𝑜𝑜 Circuit Conductance 

  

Let us discuss the constraints used in formulating this optimization problem. The storage 
level in each technology will be defined for ∀𝑗𝑗,𝑛𝑛, 𝑡𝑡 ≥ 2 such that  

 

𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡) = 𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡 − 1) + �𝜂𝜂𝑗𝑗𝑐𝑐𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡) − 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡)/𝜂𝜂𝑗𝑗𝑇𝑇�∆𝑡𝑡 (2)  
   

This states that the energy storage level of each technology at each node during every 
time step past the second one, must be equal to the storage in the previous period plus 
the difference of the energy charged and discharged between the previous period and 
the current time step. Additionally, the problem variables were bounded as follows: 

0 ≤ 𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡) ≤ 𝑅𝑅𝑗𝑗𝑐𝑐 ∀𝑗𝑗, 𝑛𝑛, 𝑡𝑡 (3)  

0 ≤ 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡) ≤ 𝑅𝑅𝑗𝑗𝑇𝑇 ∀𝑗𝑗, 𝑛𝑛, 𝑡𝑡 (4)  

0 ≤ 𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡) ≤ 𝑘𝑘𝑗𝑗𝑔𝑔 ∀𝑗𝑗, 𝑛𝑛, 𝑡𝑡 (5)  

𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡 = 1) = 𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡 = 𝑇𝑇) ∀𝑗𝑗, 𝑛𝑛 (6)  

𝑅𝑅𝑔𝑔𝑜𝑜𝑚𝑚𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔
𝑔𝑔(𝑡𝑡) ≤ 𝑅𝑅𝑔𝑔𝑜𝑜𝑚𝑚𝑚𝑚 ∀𝑗𝑗, 𝑛𝑛 (7)  

−𝑅𝑅𝑅𝑅𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔
𝑔𝑔(𝑡𝑡) − 𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡 − 1) ≤ +𝑅𝑅𝑅𝑅𝑔𝑔 ∀𝑗𝑗, 𝑛𝑛 (8)  

𝑘𝑘𝑗𝑗𝑔𝑔 = 0 ∀𝑗𝑗,𝑛𝑛 ∈ 𝐺𝐺𝑅𝑅𝑗𝑗𝑔𝑔 ∀𝑗𝑗, 𝑛𝑛 (9)  

�𝑘𝑘𝑗𝑗𝑔𝑔
𝑔𝑔∈𝑁𝑁

≤ 𝑆𝑆𝐶𝐶𝑗𝑗𝑜𝑜𝑚𝑚𝑚𝑚   ∀𝑗𝑗 (10)  
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∆𝑔𝑔𝑜𝑜(𝑡𝑡) = 𝛿𝛿𝑔𝑔(𝑡𝑡) − 𝛿𝛿𝑜𝑜(𝑡𝑡) ∀𝑚𝑚 ∈ Θ𝑔𝑔, 𝑡𝑡 (11)  

Bounds (3) and (4) define the upper and lower limits for charging and discharging 
respectively. Constraint (5) states that the storage level for a technology cannot exceed 
the amount of installed capacity of technology j at node n during time t. Constraint (6) 
states the ending energy storage level of a technology must be the same as the starting 
value. Bound (7) defines the minimum and maximum thermal generation limits. (8) 
defines the upper and lower ramping limitations of thermal generators. Let 𝐺𝐺𝑅𝑅𝑗𝑗𝑔𝑔 be 
defined as the set of nodes where geographical, zoning or social issues prevent the 
installation of a particular technology at that node. For example, a pumped hydro 
storage facility cannot work in an area without abundant water [98]. Consequently, (9) 
states that no capacity can be installed for a technology at a node that falls within that 
set. Bound (10) states that the total installed capacity over all nodes for technology j 
cannot exceed 𝑆𝑆𝐶𝐶𝑗𝑗𝑜𝑜𝑚𝑚𝑚𝑚, which denotes the total available storage capacity of a given 
technology. Lastly (11) defines the voltage angle difference for the set Θ𝑔𝑔, of buses m 
connected to bus n. 
 The energy at each node n during each time period t can be defined as an equality 
between the inflows and outflows of power.  The inflows of power include wind 
generation, thermal energy production and discharged power at each node—these are 
𝑊𝑊𝑔𝑔(𝑡𝑡), 𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡) and 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇  respectively. This model assumes that all generated wind was 
consumed, and therefore no wind curtailment was observed. Therefore, wind could be 
treated as input data. The outflows of power include the demand at each node, the 
power transmitted between nodes, the energy charged by all technologies at all nodes 
during each period, and the linearized ohmic losses—the demand and charged energy 
are defined as 𝐷𝐷𝑔𝑔(𝑡𝑡) and 𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡) respectively. The energy transmitted between nodes is 
defined as 𝐵𝐵𝑔𝑔𝑜𝑜�𝛿𝛿𝑔𝑔(𝑡𝑡) − 𝛿𝛿𝑜𝑜(𝑡𝑡)�. Transmission losses are given by the exact active 
power dissipated, 2𝐺𝐺𝑡𝑡𝑔𝑔𝑜𝑜�1 − cos�∆𝑔𝑔𝑜𝑜(𝑡𝑡)�� and will be linearized in Section 2.5.1.2. 

Fig. 1 Piecewise Linear Approximation of Ohmic Losses 
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The energy balance described above is given by the following for all buses and time 
intervals: 

                       𝑊𝑊𝑔𝑔(𝑡𝑡) + 𝑝𝑝𝑔𝑔
𝑔𝑔(𝑡𝑡) + ∑ 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡)𝑗𝑗∈𝐽𝐽 = 𝐷𝐷𝑔𝑔(𝑡𝑡) + ∑ 𝐵𝐵𝑔𝑔𝑜𝑜�𝛿𝛿𝑔𝑔(𝑡𝑡) −𝑜𝑜∈Θ𝑛𝑛

𝛿𝛿𝑜𝑜(𝑡𝑡)�  + ∑ 𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡)𝑗𝑗∈𝐽𝐽 + 2𝐺𝐺𝑡𝑡𝑔𝑔𝑜𝑜�1 − cos�∆𝑔𝑔𝑜𝑜(𝑡𝑡)��  

   
(12)  

 

Transmission limits needed to be put in place to account for network congestion. 
(13) limits the power flow between two nodes to the line limit as 𝑇𝑇𝐶𝐶𝑔𝑔𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚. The set Θ𝑔𝑔 
defined previously will be used here to ensure that only lines that exist are bounded. 
The constraint is for ∀ 𝑚𝑚 ∈  Θ𝑔𝑔 and given by 

−𝑇𝑇𝐶𝐶𝑔𝑔𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝑔𝑔𝑜𝑜�𝛿𝛿𝑔𝑔(𝑡𝑡) − 𝛿𝛿𝑜𝑜(𝑡𝑡)� ≤ 𝑇𝑇𝐶𝐶𝑔𝑔𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚 (13)  
The corresponding voltage angles are bounded for ∀ 𝑛𝑛, 𝑡𝑡 by 

−𝜋𝜋 ≤ 𝛿𝛿𝑔𝑔(𝑡𝑡) ≤ 𝜋𝜋 (14)  
Finally, n = 1 is defined as the slack bus for all time steps t by 

𝛿𝛿𝑔𝑔=1(𝑡𝑡) = 0 (15)  
 

The model given by (1) to (15) represents an optimization problem that is to be 
solved in this study. However, this model is non-convex and non-linear and will be 
adjusted in the following section. 

2.5.1.2 Explanation of Transmission Loss Formulation 

 

The key attribute of this study is the consideration of losses throughout the system. 
To maintain the optimization model’s tractability, a linearized piecewise ohmic loss 
approximation is used. Doing this requires starting with cosine and quadratic 
estimations of transmission losses. First, a cosine curve was used to represent the exact 
active power dissipated in a circuit. This provides the most accurate approximation of 
losses. While the function itself is convex, the problem remains non-convex and non-
linear preventing a globally optimal solution from being found. To address this we first 
use a Taylor Series expansion of the cosine function to obtain a quadratic approximation 
of transmission losses.  

The resulting losses can be estimated to the first two elements of the expansion and 
are given by 𝐺𝐺𝑡𝑡𝑔𝑔𝑜𝑜�∆𝑔𝑔𝑜𝑜(𝑡𝑡)�

2
 since the subsequent terms yield negligible values [115]. 

This is a relatively standard method of simplifying the optimization problem. However, 
it results in the same problem as before—the model remains non-convex and non-
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linear. To correct for this, the quadratic approximation can be estimated using a 
linearized piecewise function [115]. Figure 1 shows the linear piecewise approximation 
relative to the original cosine representation. 

In Section 2.5.1.1 the set K was introduced. Three new parameters will be introduced 
using this set in order to perform the linear approximation: 

 
𝑌𝑌𝑘𝑘 Quadratic function values 

𝑋𝑋𝑘𝑘 Original x-axis values used 

𝐼𝐼𝑘𝑘 y-intercept values for each 
segment 

These parameters allow us to calculate the equations of each segment used to 
approximate the quadratic function with linear curves at specific points via (16). Using 
them we find that the values of ∆𝑔𝑔𝑜𝑜′ (𝑡𝑡) are approximately equal to the square of the 
voltage angle differences used in the general quadratic approximation. Transmission 
losses on a line can then be represented as 0.5�𝐺𝐺𝑡𝑡𝑔𝑔𝑜𝑜Δ𝑔𝑔𝑜𝑜′ (𝑡𝑡)�. Note that product is 
halved as to prevent counting both the positive and negative sides of the approximated 
curve. 
∆𝑔𝑔𝑜𝑜′ (𝑡𝑡) ≥ �2𝑋𝑋𝑘𝑘∆𝑔𝑔𝑜𝑜(𝑡𝑡)� + 𝐼𝐼𝑘𝑘 ∀𝑘𝑘,𝑚𝑚 ∈  Θ𝑔𝑔 , 𝑡𝑡 (16)  

With this approximation, the optimization problem becomes both linear and convex. 
It can therefore be solved to obtain a globally optimal solution. Generally, it is possible 
that the optimal solution could choose a fictitious amount of system losses (e.g. a point 
above the approximation curve). This is most likely to occur in a unit commitment 
problem, where the model would find it more economically favourable to artificially 
increase transmission losses to prevent a thermal generator from incurring relatively 
large shut-down costs. But it is not physically possible to make a transmission line more 
resistive than its material composition allows for. To correct this, binary variables can be 
used to restrict power loss values to the piecewise function, thereby creating a MIP, and 
consequently an increasingly complex problem. Because this study did not deal with 
unit-commitment, this was unnecessary.  

Lastly, we must adjust (12) to represent our linearized approximation of losses in the 
system energy balance. The new equation for this is displayed in (17). The new 
optimization problem we solve, includes all the same constraints as before, but replaces 
(12) with (17) and incorporates additional constraint (16). Note that for cases in Section 
2.5.2 where we did not consider losses, this term was excluded from the energy balance 
and the subsequent parameters and variables had no effect on the model. 
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 𝑊𝑊𝑔𝑔(𝑡𝑡) + 𝑝𝑝𝑔𝑔
𝑔𝑔(𝑡𝑡) + ∑ 𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡)𝑗𝑗∈𝐽𝐽 = 𝐷𝐷𝑔𝑔(𝑡𝑡) + ∑ 𝐵𝐵𝑔𝑔𝑜𝑜�𝛿𝛿𝑔𝑔(𝑡𝑡) − 𝛿𝛿𝑜𝑜(𝑡𝑡)�𝑜𝑜∈Θ𝑛𝑛   

                     +∑ 𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡)𝑗𝑗∈𝐽𝐽 + ∑ 0.5�𝐺𝐺𝑡𝑡𝑔𝑔𝑜𝑜Δ𝑔𝑔𝑜𝑜′ (𝑡𝑡)�𝑜𝑜∈Θ𝑛𝑛  (17)  

 

2.5.1.3 Storage Investment Model 

 

The model can now be extended to consider the investment costs of new storage 
capacity. In Section 2.5.1.1, the available capacity was assumed fixed for each 
technology, therefore implicitly accounting for an investment decision. The new 
objective function will include the cost function of storage investment, 𝐼𝐼𝑗𝑗𝑚𝑚�𝑘𝑘𝑗𝑗𝑔𝑔� =
𝑘𝑘𝑗𝑗𝑔𝑔𝑚𝑚 𝐶𝐶𝑗𝑗𝑚𝑚 𝐷𝐷𝐷𝐷𝑗𝑗 �  where 𝐶𝐶𝑗𝑗𝑚𝑚   corresponds to the per MW cost of a new technology and 
𝐷𝐷𝐷𝐷𝑗𝑗  corresponds to the average discharge duration of each technology. The objective 
function is now given by (18) and subject to constraints (2) – (17). 

 

The model defined by (2) – (18) portrays a convex optimization problem with linear 
constraints, and a quadratic objective function. In our model, 𝑘𝑘𝑗𝑗𝑔𝑔 are treated as 
continuous values. This concludes the mathematical formulation of the storage 
allocation and storage investment problems with and without losses. In the following 
section, we carry out several case studies to better understand the effects of congestion, 
losses and renewable penetration when planning and designing storage for a given 
network. 

2.5.1.4 Additional Storage Metrics  

 

To best comprehend model output and draw conclusions on allocation and 
investment strategies, three additional metrics were calculated using the 
aforementioned parameters. These metrics are defined as follows: 

min
Ω

���𝐼𝐼𝑔𝑔
𝑔𝑔�𝑝𝑝𝑔𝑔

𝑔𝑔(𝑡𝑡), 𝑡𝑡� + � 𝐼𝐼𝑗𝑗𝑔𝑔𝑇𝑇 �𝑟𝑟𝑗𝑗𝑔𝑔𝑇𝑇 (𝑡𝑡), 𝑡𝑡�
𝑔𝑔∈𝑁𝑁,𝑗𝑗∈𝐽𝐽𝑔𝑔∈𝐺𝐺

� 
𝑡𝑡∈𝑇𝑇

+ � 𝐼𝐼𝑗𝑗𝑚𝑚

𝑔𝑔∈𝑁𝑁,𝑗𝑗∈𝐽𝐽

�𝑘𝑘𝑗𝑗𝑔𝑔� 

                          

(18)  
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𝑂𝑂𝑅𝑅𝑗𝑗𝑔𝑔   = 1 −
𝑚𝑚𝑎𝑎𝑥𝑥𝑡𝑡�𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡)�

𝑘𝑘𝑗𝑗𝑔𝑔
                                    ∀𝑗𝑗,𝑛𝑛     (19) 

𝐶𝐶𝑅𝑅𝑗𝑗𝑔𝑔 =
∑ �𝑟𝑟𝑗𝑗𝑔𝑔𝑐𝑐 (𝑡𝑡) ∙ ∆𝑡𝑡�𝑡𝑡∈𝑇𝑇

𝑘𝑘𝑗𝑗𝑔𝑔
                   ∀𝑗𝑗, 𝑛𝑛  𝑚𝑚𝑝𝑝 𝑘𝑘𝑗𝑗𝑔𝑔 > 0     (20) 

 

𝑂𝑂𝑆𝑆𝑂𝑂𝑗𝑗 =
∑ 𝑠𝑠𝑗𝑗𝑔𝑔(𝑡𝑡)𝑔𝑔,𝑡𝑡

∑ 𝑠𝑠_𝐵𝐵𝑎𝑎𝑠𝑠𝑒𝑒𝐶𝐶𝑎𝑎𝑠𝑠𝑒𝑒𝑗𝑗𝑔𝑔(𝑡𝑡)𝑔𝑔,𝑡𝑡
                                   ∀𝑗𝑗     (21) 

The Overall Capacity Metric (OM) in (19) compares the maximum storage level in MWh 
attained over the time horizon to the actual amount of capacity of that technology 
installed at each node. The Cycling Metric (CM) in (20) keeps track of how many full 
charging cycles a technology goes through over the total time horizon at each node. 
Lastly, the Overall Storage Level Metric (OSL) in (21) provides an idea of how much 
energy each technology stores throughout a day for each scenario in comparison to the 
base case of an unconstrained network. 

2.5.2 Case Studies  

In this section we present case studies to validate the previously presented 
methodology and formulation.  Section 2.5.2.1 describes the data used for these studies. 
Sections 3.2 to 3.5 contain different scenarios for the allocation and investment models 
with the consideration of ohmic losses described earlier. In Section 2.5.2.2 we compare 
the storage allocation model assuming an unconstrained network. Section 2.5.2.3. 
studies the same system for two different scenarios of network congestion.  Sections 
2.5.2.4 and 2.5.2.5 expand on the allocation model to consider installation and operating 
costs for storage. Section 2.5.2.4 looks at the effects of varying degrees of wind 
generation on investment decisions. Section 2.5.2.5 builds on this to consider the effects 
of transmission losses and congestion. Lastly, section 2.5.2.6 contains an analysis and 
review of the results from these. 

2.5.2.1 Input Data 

 
The numerical examples in this section are based on the 14-bus IEEE benchmark 

system [118]. Transmission constraints are adopted into this model via 𝑇𝑇𝐶𝐶𝑔𝑔𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚. Unless 
otherwise stated the transmission capacity between any two nodes is 400 MW. Note 
that all data inputs (excluding those relevant to the losses formulation) are adopted 
from [115]. This includes information regarding the charge/discharge rates [119]  and 
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total storage capacity and charge/discharge efficiencies [120]. Relevant information 
regarding the available storage portfolio is in Table 1. 

 
 
 
 

 

 

 

 

 
 
 
Four different storage technologies were considered: pumped-storage hydro (PSH), 

compressed air energy storage (CAES), lithium ion batteries (LI-ION), and flywheel 
energy storage (FES). Additional data regarding the physical attributes of FES was 
obtained from [121] which studied large scale deployment of Flywheel technology. 
Studies were run over a 24-hr time horizon with time steps ∆t = 5-min throughout the 
day allowing for both long and short time scale observations. Demand data for the 
network represents a typical day in Southern California during July of 2010 [118]. The 
data provided by [118] was provided in 10-min intervals and interpolated to 5-min time 
steps to be used in this case study. Both conventional thermal and wind generation 
occur at buses 1, 2, 3, 6 and 8. Wind is treated as a parameter. As such, the model is set 
up to force all wind generated power to be accepted. Similar to what may happen when 
feed-in tariffs to require the use of renewably generated power. The information is 
adopted from the 2006 NREL Western Wind Resources Dataset [122]. Wind data was 
available in 10-min intervals. A set of interpolated 5-min intervals was used to run these 
cases. 

 
In Sections 3.4 and 3.5, the wind generation was scaled up and down by fixed 

multipliers to represent different generation scenarios. The operational cost of charging 
is determined by the locational marginal pricing (LMP) of power at a given bus. Thermal 
generation energy is priced as follows: Operational costs for the cheapest thermal plants 
located at buses n = {1, 2} are  = 20 [$/MW] and  = 0.043,  = 0.25 
[$/MW2]. Buses n = {3, 6, 8} had higher costs associated with thermal production. The 
linear cost coefficients associated with these buses, n, were  = 40 [$/MW] and  
= 0.1 [$/MW2]. The lower bound for all generators across all nodes was = 0. The 
upper bounds for each thermal unit were as follows:  = 332.4,  =140,  =  
=  = 100. All thermal generation units were assumed to have ramp rates of RR = 2 
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Table 1 Storage Technology Parameters 
Storage 

Technology 
Dis/Charge 
Efficiency 
𝜂𝜂𝑐𝑐 , 𝜂𝜂𝑇𝑇  [p.u.] 

Investment  
sdfdsfsd 

Cost, 𝐶𝐶𝑗𝑗𝑚𝑚[$/MW/d] 

Discharge 
Duration, 
𝐷𝐷𝐷𝐷𝑗𝑗  [hr] 

PSH 0.87 250 12 

CAES 0.78 24 24 

LI-ION 0.94 800 4 

FES 0.96 550 0.0833 
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MW per 5-min time step in both directions .The model is developed in GAMS 25.1.1 and 
solved using the commercial solver GUROBI 8.0. The solver defaults settings were used 
for all the experiments, which were run on an Intel-i7 CPU @3.4-GHz computer with 
16GB of RAM memory and four cores. 

2.5.2.2 Storage Allocation in an Unconstrained Network 

 Here we analyse the allocation of storage in an unconstrained network with losses. We 
assume in this scenario that the maximum amount of capacity for each storage 
technology will always be allocated throughout the network. Excluding losses, we find 
that the locational marginal pricing (LMP) at every node is the same. No technology is 
favoured, and the capacity of each technology is distributed evenly system wide. 
However, no CAES storage was chosen at all. The absence of this technology is likely the 
result of its low round-trip efficiency. The introduction of losses into the model led to 
changes in the spatial distribution of storage capacity and the temporal usage of each 
technology. FES and PSH technologies exhibited the greatest changes. We can observe 
the changes in nodes 3 and 9 to best understand this.  

 
 

 
 
As expected the CM (See Table 2) indicates that FES goes through the most full cycles 

of any technology in the portfolio. This is likely attributed to its short ramp time which 
allows it to fully charge and discharge within a single timestep. When losses are 
introduced, the number of cycles more than triples at node 3 and doubles at node 9 
even though the overall capacity remains unchanged. FES is the “fastest” technology 
allowing it to stabilize short term fluctuations in load caused by wind generation. This 

n3 n9 n3 n9
PSH 0.0025 0.0025 0.9999 0.9999
CAES 0.0031 0.0031 1.0000 1.0000
LION 1.7335 1.7335 0.9286 0.9286
FES 5.3050 5.3050 0.9286 0.9286
PSH 0.0037 0.0011 0.9998 0.9999
CAES 0.0000 0.0000 1.0000 1.0000
LION 3.1188 1.0445 0.8863 0.9799
FES 18.0912 10.6613 0.7088 0.8669
PSH 0.1265 0.0000 0.9918 1.0000
CAES 0.0000 0.0000 1.0000 1.0000
LION 1.1742 2.1102 0.0937 1.0000
FES 6.6397 0.0000 0.2446 1.0000
PSH 0.0898 0.0000 0.9923 1.0000
CAES 0.0000 0.0000 1.0000 1.0000
LION 1.0396 0.0000 0.1081 1.0000
FES 6.1778 0.0000 0.2582 1.0000

Case Study Tech

Congestion = NO
Losses = NO

Congestion = NO
Losses = YES

Congestion = 
YES

Losses = NO

Congestion = 
YES

Losses = YES

OSLOMCM

1.00
0.00
1.00
1.00
1.24
0.00
1.00
1.00
15.53
0.00

1.09

1.07
1.11
15.80
0.00
1.07

Table 2: Storage Allocation, Additional Storage Metrics 
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characteristic becomes increasingly advantageous when there is less flexibility in power 
transmission to ease load volatility. PSH is a slow-moving technology but its large 
allowable capacity permits it to employ a day/night arbitrage pattern of operation. The 
OSL (See Table 2) illustrates this trend with an increase of 24% in PSH storage usage 
midday, allowing a system operator to dissipate stored energy at the evening peaks, 
Looking at Fig. 2 we see this pattern of storage deployment illustrated by the step down 
in network-wide PSH storage level starting around time-step 175. The storage level 
remained at a plateau midday when demand was lower in order to be discharged when 
it was needed most. 

 

 
 
 

 

2.5.2.3 Storage Allocation in a Constrained Network 

In this section we explore how network congestion impacts storage allocation. 
Originally values representing a very congested network were used to simulate the case 
of “full” congestion. Congestion was introduced into the network as follows: 𝑇𝑇𝐶𝐶12𝑅𝑅𝑀𝑀𝑀𝑀 =
80𝑅𝑅𝑊𝑊,𝑇𝑇𝐶𝐶15𝑅𝑅𝑀𝑀𝑀𝑀 = 40𝑅𝑅𝑊𝑊,𝑇𝑇𝐶𝐶23𝑅𝑅𝑀𝑀𝑀𝑀 = 𝑇𝑇𝐶𝐶42𝑅𝑅𝑀𝑀𝑀𝑀 = 30𝑅𝑅𝑊𝑊. The remaining lines had a 
capacity of 400 MW [98].  

Fig. 2 System-Wide PSH Storage level in a free-flowing network with 
and without losses over all timesteps 
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Storage in an uncongested network exhibited significant changes in location and 
usage when losses were introduced, however this was not the case for the constrained 
case. In this scenario, a system operator is limited as to where they can route power to 
meet demand. This makes the system unable to deal with rapidly changing power flows 
such as those discharging from flywheels. The CM and OM metrics at bus 3 for FES in 
Table 2 indicate this. The CM did not change significantly, and the OM dropped to 24%, 
indicating that FES storage was not used at full capacity in the constrained network. 
Considering losses did not change these values significantly. For PSH storage network 
congestion increased the OSL fifteen-fold system-wide from the base case. Again, 
considering losses yielded no significant changes. 

In Figures 3 and 4, we see that losses take a backseat as the driver of capacity 
allocation in congested networks, creating no significant shifts in storage operations. 
This is best illustrated in Fig. 3 by looking at how the storage level curve with losses has 
negligible differences to the based case curve. However, when congestion was 
introduced on its own, we observe a drastic impact on PSH storage as shown by the 

Fig. 3 (Top) System-Wide PSH Storage in a congested network, with and without losses 
over all timesteps 
Fig. 4. (Bottom) System-wide PSH storage with and without congestion, ignoring 
transmission losses. 



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          89 

 

dramatic increase in system wide storage level in Fig. 4. Thus, while it may be important 
to consider transmission losses in a free-flowing network, in a congested they will not 
significantly impact how a storage system should be integrated. 

2.5.2.4 Storage Investment for Varying Wind Generation 

While the previous cases worked on the premise that all the available storage 
capacity is allocated and free of charge, the next two cases will include the cost of 
installation as well. In every one of the four scenarios investigated for allocation, FES 
was the only storage technology worth investing in. This is because of its flexibility in 
deployment, and ability to stabilize load. However, no significant changes in capacity 
investment were observed when losses, congestion, or both forms of blockage were 
introduced. We can conclude that network inhibitors did not increase the marginal value 
of storage capacity, making the investment costs too high to bare for large-scale 
expansion at the base level of renewable penetration. To investigate the value-add that 
storage can provide as a load stabilizing technology, the net demand profile was shifted 
by introducing different degrees of wind generation. Since the erratic generation 
pattern of wind was likely pushing all investment into FES, we wanted to understand 
what would happen with different magnitudes of wind generation. The NREL Western 
Wind Sources Data Set [122] was applied to the model at 25%, 50%, 100%, 200%, 250% 
and 300% of the base values used in Sections 3.2 and 3.3. The Standard Value of wind 
production will be used to refer to the case of 100% of production provided in the NREL 
Western Wind Data Set.   

 
Table 3 Total invested capacity for each technology in kWh, for all scenarios of 
congestion, transmission losses and wind generation 
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For the case of an unconstrainted network at or below standard wind production, 
FES was the only storage technology invested in. In fact, when wind generation was 
reduced to the lower boundary of 25% of standard production, the total invested 
capacity of FES only dropped by 5% as indicated by the capacity investment values in 
Table 3. This implies that the need for FES capacity may primarily be to provide general 
load balance as opposed to just dealing with fluctuations from volume of wind 
generation. Despite this, when wind production is increased in the network, a significant 
change in investment strategy is observed. At a 2.5-fold increase, investment in FES 
capacity increase by 41% and with an additional 103 MWh of CAES being sited as shown 
in the second to last column of Table 3. This is the first instance where the model chose 
to invest in CAES across all scenarios. Recall that in the allocation cases, the low 
efficiency [98] of this technology seemed to make it an unfavourable choice. Similarly, 
at low levels of wind generation, CAES was not advantageous to install.  

However, when wind production rose (and thus overall energy produced in the 
network increased) there grew a need for large-scale energy reservoirs. Table 3 indicates 
this pattern in the first case, right-most column, by the high volume of capacity 
investment (darkest green cells). The cost of installing new technologies is a function of 
the discharge duration as well as a capacity cost. Technologies with longer discharge 
durations have a lower cost per MWh. Looking back to Table 1, we see that this likely 
caused the model to favour CAES despite its inefficiency. In the Standard Wind case, a 
significantly more expensive technology like FES is favourable because of its ability to 
smooth out the energy balance seen in (17). In the high production scenarios, the sheer 
increase in volume of energy seems to be the most significant driver of investment 
decisions. The model chooses to find a way to use all the power in the network anyway 
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it can as a priority. It should be noted that in the 300% case, no energy was produced 
from thermal generation. 

2.5.2.5 Storage Investment for Varying Wind Generation in a Constrained Network. 

Congestion was introduced identically to the allocation case, as follows: 𝑇𝑇𝐶𝐶12𝑅𝑅𝑀𝑀𝑀𝑀 =
80𝑅𝑅𝑊𝑊,𝑇𝑇𝐶𝐶15𝑅𝑅𝑀𝑀𝑀𝑀 = 40𝑅𝑅𝑊𝑊,𝑇𝑇𝐶𝐶23𝑅𝑅𝑀𝑀𝑀𝑀 = 𝑇𝑇𝐶𝐶42𝑅𝑅𝑀𝑀𝑀𝑀 = 30𝑅𝑅𝑊𝑊. As was the case in the allocation 
model, congestion had a more significant impact on the investment strategy than did 
losses. In the free-flowing case, most of the system wide storage capacity was sited at 
the bus with the greatest load—bus 3. When wind generation increases over twice the 
standard rate, FES is replaced with CAES. The introduction of losses alone only led to a 
slight increase in system storage capacity while maintaining the same technology 
selection shown in Figure 6. This held true even for the highest wind generation 
scenarios. When congestion was introduced into the network, system-wide storage 
capacity nearly doubled. Most of this change can be attributed to an 80% increase in 
CAES capacity investment.  

Much like the free-flowing case, the largest share of storage capacity, specifically 
CAES, was located at bus 3. Looking at Table 3, we observe that as wind generation 
increased from 250% to 300%, this pattern was exemplified. It manifested itself in a 
nearly 5-fold increase in CAES, 5.5 times increase in PSH and a doubling of LION at bus 
3. These results are reflected in the two right-most columns of Table 3. This was 
significantly higher than the increases observed when introducing losses alone. The 
model seemed to generally follow this pattern as wind generation in the system 
increased. 

Adding both transmission constraints and losses into the model dampened these 
effects slightly. While there were significant changes in storage capacity investment 
from observing losses alone in the model, the network appears to be too constrained to 
invest in quite as much storage. Inhibiting power flow makes it less economic to have 
storage located only at demand and generation hubs. Since losses must be incurred 
when moving throughout the network, it makes less sense both logistically and 
economically to rely on stored power. For this reason, a decrease in overall storage 
capacity of 10% is observed. 
 

2.5.2.6 Case Study Analysis 

 
To better understand the results of the case studies this section will explore the 

implications of the observations made earlier. For the various allocation scenarios, we 
find that round-trip efficiency governs the way the storage capacity is sited, and 
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therefore the technology with the lowest efficiency, CAES was never chosen. When 
investigating the effects of losses and congestion, we find that congestion is a more 
forceful driver in capacity allocation than are losses. Both network inhibitors push 
capacity siting towards nodes with high demand and high wind generation, with 
congestion doing so to a much greater degree. Introducing losses to a congested 
network results in no change in capacity siting or in technology deployment. It is 
therefore imperative for a system operator to consider network congestion above losses 
as an unforeseen cost when planning grid-scale storage integration. As for transmission 
losses alone, ignoring them may lead to some initial saving but long term will require 
network upgrades.  

 
The second set of cases focused on storage capacity investment. When running the 

same scenarios as the allocation model, we find that the model output did not vary 
significantly with the introduction of congestion or losses. The model always favours 
investment in FES storage since the marginal value of storage capacity is tied to its load 
stabilizing capabilities. To study different degrees of load variability, the cases were 
rerun with varying levels of renewable penetration. 

 
When scaling wind production down no substantial changes to the FES investment 

strategy are observed, affirming that this technology’s primary use is for system load-
balance needed irrespective of non-dispatchable generation. However, when 
production is increased, the investment strategy changes greatly, buying mostly into 
CAES capacity. Since the model does not allow for any spillage, all wind power generated 
must be consumed to meet demand, lost via transmission or stored. We find that losses 
do not significantly change the investment strategy at any level of renewable 
penetration. On the other hand, congestion leads to nearly double system-wide storage 
capacity for the highest wind production case. This is in line with the observations made 
when looking at the allocation model—congestion plays a more important factor in 
planning large-scale energy storage integration than do losses. 

 
Looking at the objective function output for these cases we can reaffirm this 

observation. Note that the demand in every case was held constant. The base case 
objective function value (equivalently system operating cost) was $841,890.71. For the 
allocation model, introducing losses, only causes a 2.4% increase in operating cost, while 
congestion results in a 13.5% increase. When adding losses to the constrained network, 
we only see an additional increase of 2% to the objective function value. 
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The objective function in the base case for the investment model was $836,343.04. 

A summary of the per-unit change in system operating costs for the set of investment 
studies can be seen in Table 4. We see that with standard wind generation, losses again 
only add 2.4% to the objective function value while congestion increases costs by a 
factor of 12.9%. As was seen in the allocation model, the addition of losses to a 
congested system only increases the overall operating cost by 2%. Moving horizontally 
across the table we observe that operational cost has an inverse relationship to the 
amount of wind generation available. Since demand is held constant in all cases, as free 
wind generation decreases, thermal generation must be deployed to compensate. This 
cost increase becomes larger in a constrained network. 

2.5.3 Conclusions 

 
In this paper the effects of network congestion, transmission losses and the varying 

degrees of intermittent wind generation on energy storage allocation and investment 
were explored. We consider a DC OPF model that considers storage allocation and 
adjusts it using a linearized approximation for ohmic losses. The model included 
dispatchable thermal generation and intermittent wind generation as the primary 
sources of energy in the grid. Thermal output is treated as a decision variable while wind 
generation is adopted from a data set as a parameter [122]. 

 
To better interpret model outputs from the allocation cases, we formulate three 

additional metrics allowing for greater insight into how the storage capacity is 
distributed throughout the network, used over the set time-horizon, and affected by the 
introduction of transmission inhibitors. Two sets of case studies were run—one for 
investigating storage allocation and the other for understanding storage investment 
strategies. In both cases it was found that losses had a relatively small effect on storage 
siting and investment decisions, while congestion significantly impacted the model 
output. Congestion drove higher storage capacity siting with more of it located close to 

x 0.25 x 0.50 x 1.0 x 2.0 x 2.5 x 3.0
Congestion = NO

Losses = NO 1.645 1.419 1.000 0.290 0.031 0.000

Congestion = NO
Losses = YES 1.681 1.451 1.024 0.301 0.037 0.000

Congestion = YES
Losses = NO 1.854 1.598 1.129 0.307 0.035 0.000

Congestion = YES
Losses = YES 1.880 1.622 1.149 0.320 0.041 0.000

Case Study
Wind Production

Table 4  Summary of p.u. change to objective value for investment case studies with 
varying wind production 
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demand centres. When both forms of network constraints were introduced 
simultaneously, losses did not drastically change the results. In addition, both sets of 
case studies showed that faster ramping technologies such as flywheels were favoured 
for increased renewable penetration for their load stabilizing capabilities. However, 
after a certain threshold of renewable capacity was reached the investment model 
favoured larger scale to better manage excess energy supply and avoid spillage. 

 
In future research we consider addressing how energy storage can be used to deal 

with grid stability for more unpredictable scenarios. Excess congestion, and damage to 
power lines have the potential to create outages. Stochastic optimization can be applied 
to understand how energy storage can be used as reserves for blackouts or to prevent 
isolated nodes from going dark if transmission options are limited.  

 

2.6 Net Present Value as a tool for assessing investment 

Net present value (NPV) is a widely used concept to calculate the value of assets or 
whole companies not only in an electric framework but also in most of industrial sectors. 
It has been largely used in economic analysis long ago. Although previous work already 
had already made use of the underlying idea of discounting, NPV was formalized at the 
beginning of 20th century by Irving Fisher [123]. The idea of present value consists in 
using a discount factor to represent how the value of money changes along time when 
evaluating incomes, cost or profits that occur in different years along the time. Although 
a modified value of this discount rate could be used to take into account risk 
consideration, a risk free discount rate will be considered herein leaving risk 
consideration beyond the intended scope of this work. It is also possible, and 
conceptually easy although unnecessarily complicated, to include the effect on inflation 
adapting the value of the discount rate. For the sake of simplicity, we will not consider 
the effect of inflation either. 
 
The other characteristic of NPV is the idea of net value. It refers to the consideration of 
the results of the investment taking into account incomes, investment costs, operation 
costs and corporate taxes, and summing it up over an infinite time horizon, including a 
residual value for the furthest years. There are some alternatives to NPV that are used 
to evaluate electric assets, such as payback period, internal rate of return (IRR),  real 
options, (which attempt to include the flexibility in the time of the investment, assumed 
away in NPV) or cost-benefit analysis, (which may include issues other than cash, i. e. 
environmental or quality issues). Anyway, the use of NPV, with some simplifications such 
as disregarding corporate taxes and financial costs, is widely extended in the electricity 
sector. 

 
A common technique used to evaluate profitability of a project, is evaluating its NPV 
using as discount rate the company WACC (weighted average capital cost). If NPV is 

https://en.wikipedia.org/wiki/Cost-benefit_analysis


Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          95 

 

positive the project or the firm is profitable, if it is zero, it breaks even and if it is negative, 
it is not profitable. The value of WACC depends on the company debt structure and 
integrates the expected profitability for the shareholders and the interest rate paid for 
the company debt. In this context, breaking even means, being able to pay the debt 
interest and giving the shareholders an acceptable level of profitability [124]. 
 
NPV is commonly used when evaluating electric assets in long-term studies, to ensure 
that the aggregation of the values along the years is suitable. NPV by itself does not 
provide a method to estimate incomes and cost along the years, and thus it requires the 
use of exogenous data or estimation models. An approach that is very common in the 
electric studies, is using a mathematical programming to maximize discounted profit 
(approximated as income minus overall costs). In this approach, the objective function 
can be considered as an approximation of NPV, but frequently, taxes and amortization 
are not considered, and residual value is often disregarded or estimated in a rough way. 
An alternative approach, is using NPC (net present cost, considering overall costs) as 
objective function and minimize it. As will be discussed later, under some hypothesis 
this is equivalent to make the NPV equal to zero, and thus computing the point where 
the company breaks even. 
 
The work by Campos et. al [125] studies the links between the value of NPV and other 
profitability measures, and the solutions that are obtained when discounted cost 
minimization is used to stablish capacity expansion. The present work intends to shed 
light on the proper use of a detailed representation of NPV and NPC in the framework 
of electric systems generation expansion planning taking into account residual value as 
part of the investment model. 

2.6.1 Literature Review 

Some of the studies of generation capacity expansion planning use the so-called static 
approach. They study a single year in the future and determine the optimal mix for this 
time, not taking care of the path of investment that has led to this situation along the 
years. This method requires to assign part of the overall investment cost to the analyzed 
year. Some classical works in the field of expansion planning use this static approach for 
a single year. In Ramos et al [126] NPC is minimized using this approach. Discounted 
benefit, that can be considered as a simplification of NPV is used by Ventosa in [127] and 
by Murphy and Smeers in [128]. More recent works use a static approach. For example 
a cost minimization model including the network [129], a MILP cost minimization model 
for carbon dioxide emission analysis [130], two models including network and market 
representation [131], [132] and a cost minimization model including operating reserves 
[133]. Pozo et. al [134] uses a three level static approach to simultaneously analyze 
generation and transmission expansion. GENCO profits are maximized using an 
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annualized investment cost. A different three level approach is also used in [135] to 
analyze minimum cost expansion, taking account reliability issues. 
 
Being useful in some situations or for simplified studies, this single year static approach 
may be misleading, i. e. in the current context of rapid development of renewables 
technologies as their investment cost are rapidly changing. Results of a static analysis 
may be very ambiguous regarding the year in which investments should be done, as this 
may have a huge value in the annualized cost.Other works deal with a several-year 
horizon and use an annualized investment cost for each year. Some examples are the 
works by Gorenstin [136], Wogrin [137], Vespucci [138], Nogales [139] and Dominguez 
[140]. All these works as well as the previously mentioned [125], do not consider a 
residual value to represent the years beyond the study horizon. A residual value is 
considered in [141] for generation assets, that in this case is the value of resale of the 
assets at the end of the study year (savage value). This value may be useful for the study 
of the value of a single plant, nevertheless for a whole company it is not very adequate, 
because on the one hand the resale value of a whole company is volatile and complex 
to compute, and on the other hand it is more realistic to consider that the company is 
going to be running for a long period of time, beyond the end of the studied horizon. 
The residual value is represented by replicating indefinitely the last year of the study in 
[142]. 
 
Residual value, may be disregarded in some circumstances (long study horizon and high 
discount rate values) but in general it should be included as part of the NPV or NPC. This 
approximation may make sense if only the investment decisions for the initial years of 
the horizon are to be considered. However, the value of NPV or NPC will not be correct. 
For example, it the study horizon is 15 years and discount rate is 5%, residual value 
accounts approximately for 50% of the total NPV or NPC.  
 
An additional advantage of considering residual value is that we can use a more realistic 
criteria (known as free cash flow in the economic literature), and include the overall 
investment cost, the year when each plant is built. By doing so, we do not need to 
consider this annualized cost exogenously as is common practice in the literature. This 
is a major advantage of the method presented herein. This way there is no need for 
arbitrarily fixing a method for annualization. Besides we can take into account closures 
and replacement by including new plants and its building cost, the year they enter the 
system.All of the above works, as is common use, consider that investment cost, is 
distributed among the years and then years are separately computed. 
 
This paper makes a contribution by extending the previous works, allowing for the 
deterministic consideration of the NPC of a whole company with a discount rate, under 
the infinite life hypothesis, taking into account at the same time finite life span of assets 
by properly including residual value and considering overall investment costs. The 
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presented model is compared with the annualized alternative, analyzing when 
minimizing net present cost is equivalent to considering NPV=0, what makes the 
company break even. 
 
The rest of the paper is structured as follows: section 2.6.2 presents the definition of net 
present value, section 2.3.3 describes the annualized and overall models, section 2.3.5 
compare its performance in a study case and in section 2.6.5 some conclusions are 
drawn. 
 

2.6.2 Net Present Value Formulation 

2.6.2.1 Annual profit 

Annual profit for a generation company is defined as follows: 
 

𝜋𝜋𝑦𝑦 = 𝐼𝐼𝑦𝑦 − 𝐶𝐶𝑦𝑦 − 𝑇𝑇𝑦𝑦 (1) 
  

In this expression 𝜋𝜋𝑦𝑦  is the profit in year y, 𝐼𝐼𝑦𝑦 is the income in day ahead market, 𝐶𝐶𝑦𝑦 is 
cost, including investment and operation cost and 𝑇𝑇𝑦𝑦 is the corporate income tax. Other 
taxes such as generation taxes that do not depend on the company profits, should be 
taken into account as costs. The consideration of corporate taxes is beyond the scope of 
this paper and thus they will be disregarded. 

2.6.2.2 Net present value (NPV) 

It can be defined for a project or for a company as follows. 

𝑁𝑁𝑅𝑅𝑉𝑉 = �
1

𝑟𝑟𝑦𝑦−1
.𝜋𝜋𝑦𝑦

𝑌𝑌

𝑦𝑦=1

+ 𝑅𝑅𝑉𝑉 
(2) 

 
Here  𝑟𝑟 = 1 + 𝑑𝑑, being d the discount rate.  
 
NPV as is defined here may be used in two ways. In the first one d is set to the company 
or project WACC, and then VAN is computed and profitability stablished as a 
consequence of its sign. The second one involves searching in an iterative way, the value 
of d that leads to a zero value for NPV, that is the Internal Return Rate (IIR). The models 
presented in this paper may be useful for both approaches. 
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2.6.3 Models Formulation 

We will consider a perfect competition market with elastic demand. No capacity 
payments will be considered. For the sake of simplicity, but without losing generality, no 
spinning reserve or other technical constraints are considered for operation nor 
coverage index for demand. 

2.6.3.1 Cost for a single year Y 

Cost for a single year can be obtained by solving a basic linear programming problem. 

𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝜔𝜔𝑗𝑗,𝑞𝑞𝜔𝜔𝑗𝑗𝑙𝑙,ℎ𝑗𝑗𝑙𝑙,𝑆𝑆𝑙𝑙𝑗𝑗  ��𝛽𝛽𝑗𝑗𝑌𝑌𝑥𝑥𝑗𝑗𝑌𝑌�
𝑗𝑗

+�𝛿𝛿𝑗𝑗𝑌𝑌𝑡𝑡𝑙𝑙𝑞𝑞𝑗𝑗𝑌𝑌𝑙𝑙
𝑗𝑗𝑙𝑙

−�
1

2𝑎𝑎𝑙𝑙𝑌𝑌
(𝐷𝐷𝑌𝑌𝑙𝑙′ − 𝐷𝐷𝑌𝑌𝑙𝑙)2

𝑙𝑙

 

(3) 

s.t.                     

0 ≤ 𝑞𝑞𝑗𝑗𝑌𝑌𝑙𝑙     ∶   𝜌𝜌𝑗𝑗𝑌𝑌𝑙𝑙          ∀ 𝑗𝑗, 𝑙𝑙 

 
(4) 

𝑞𝑞𝑗𝑗𝑌𝑌𝑙𝑙 ≤ 𝑘𝑘𝑗𝑗𝑥𝑥𝑗𝑗𝑌𝑌     ∶   𝜇𝜇𝑗𝑗𝑌𝑌𝑙𝑙       ∀ 𝑗𝑗, 𝑙𝑙 
(5) 

��𝑞𝑞𝑗𝑗𝑌𝑌𝑙𝑙�+  ℎ𝑌𝑌𝑙𝑙  = 𝐷𝐷𝑌𝑌𝑙𝑙     ∶   𝑝𝑝𝑌𝑌𝑙𝑙         ∀ 𝑙𝑙
𝑗𝑗

 
(6) 

�(𝑡𝑡𝑙𝑙ℎ𝑌𝑌𝑙𝑙) = 𝐸𝐸𝑌𝑌     ∶   𝜎𝜎𝑌𝑌 
𝑙𝑙

 
(7) 

Subscript l stands for load level and j for technology (thermal or renewable), 𝑥𝑥𝑗𝑗𝑌𝑌 is the 
total capacity of each technology during the year and is a decision variable of the model 
that will be considered as continuous. The rest of decision variables are the production 
of each technology at each load level, 𝑞𝑞𝑗𝑗𝑌𝑌𝑙𝑙  (thermal or renewable), ℎ𝑌𝑌𝑙𝑙  (hydro), and 
demand at each load level, 𝐷𝐷𝑌𝑌𝑙𝑙.The objective function in this model represents yearly 
cost for a single year Y, including a term of demand utility to represent demand elasticity. 
Operation cost is 𝛿𝛿𝑗𝑗𝑌𝑌 and load level durations is 𝑡𝑡𝑙𝑙.  
 
By writing the problem KKT conditions it can be easily proved that   

𝐷𝐷𝑌𝑌𝑙𝑙 = 𝐷𝐷𝑌𝑌𝑙𝑙′ − 𝑎𝑎𝑌𝑌𝑙𝑙𝑝𝑝𝑌𝑌𝑙𝑙 , 
(8) 

 

in this expression, 𝐷𝐷𝑌𝑌𝑙𝑙′ and 𝑎𝑎𝑌𝑌𝑙𝑙 are parameters that define linear demand. 
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In (3) 𝛽𝛽𝑗𝑗𝑌𝑌 is the so-called annualized investment cost for each technology computed for 
year Y, and should be chosen for all the years (including Y) so that along the plant life 
span ls (taking into account the discount rate) it sums up the overall investment cost. 

𝐵𝐵𝑗𝑗𝑌𝑌 = �
𝛽𝛽𝑗𝑗(𝑌𝑌+𝑚𝑚−1)

(1 + 𝑑𝑑)𝑚𝑚−1

𝑚𝑚=𝑙𝑙𝑠𝑠(𝑗𝑗)

𝑚𝑚=1

 
(9) 

There is an infinite set of values that satisfy this expression. If in addition to this 
condition it is imposed that the annualized cost, for an asset built on year Y, must be the 
same for all years along its life-span (this is the so called French method, but there are 
other alternatives as it will be shown later) then it can be computed as: 
 

𝛽𝛽𝑗𝑗𝑌𝑌 =
𝐵𝐵𝑗𝑗𝑌𝑌𝑑𝑑

(1 + 𝑑𝑑) .
1

1 − (1 + 𝑑𝑑)−𝑙𝑙𝑠𝑠(𝑗𝑗) 
(10) 

 
It will be considered in all the models presented herein, as is commonly done in capacity 
expansion models, that both investment and operation cost are charged at the 
beginning of the year. This may lead to expressions slightly different from the standard 
ones that can be found in economy books. The model constraints include lower limit for 
production (4), upper limit for production, including utilization factor kj (5), generation-
demand balance (6), and hydro production energy balance (7) being 𝐸𝐸𝑌𝑌 total hidro 
available energy. Dual variables are written after the colon. 

2.6.3.2 Cost annualized non-monotonic model (for several years) 

The previous model can be easily extended to several year just by adding them 
discounted. Now y is the subscript for year. Nevertheless, it is immediate that each year 
could be solved separately. In this model years are represented separately, and hence 
the value of the investment x, may decrease along the time (accepting early closure of 
plants). 
 

𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝜔𝜔𝑗𝑗,𝑞𝑞𝜔𝜔𝑗𝑗𝑙𝑙,𝑆𝑆𝑗𝑗𝑙𝑙,ℎ𝑗𝑗𝑙𝑙  

��
1

𝑟𝑟𝑦𝑦−1
���𝛽𝛽𝑗𝑗𝑦𝑦𝑥𝑥𝑗𝑗𝑦𝑦�

𝑗𝑗

+ �𝛿𝛿𝑗𝑗𝑦𝑦𝑡𝑡𝑙𝑙𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙
𝑙𝑙𝑗𝑗

�
𝑦𝑦=𝑌𝑌

𝑦𝑦=1

−�
1

2𝑎𝑎𝑦𝑦𝑙𝑙
�𝐷𝐷𝑦𝑦𝑙𝑙′ − 𝐷𝐷𝑦𝑦𝑙𝑙�

2

𝑦𝑦𝑙𝑙

� 

(11) 
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s.t. 

0 ≤ 𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙     ∶   𝜌𝜌𝑗𝑗𝑦𝑦𝑙𝑙           ∀ 𝑗𝑗,𝑦𝑦, 𝑙𝑙 

 
(12) 

𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙 ≤ 𝑘𝑘𝑗𝑗𝑥𝑥𝑗𝑗𝑦𝑦     ∶   𝜇𝜇𝑗𝑗𝑦𝑦𝑙𝑙           ∀ 𝑗𝑗,𝑦𝑦, 𝑙𝑙 
(13) 

��𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙� +  ℎ𝑦𝑦𝑙𝑙  = 𝐷𝐷𝑦𝑦𝑙𝑙      ∶   𝑝𝑝𝑦𝑦𝑙𝑙
𝑗𝑗

          ∀ 𝑦𝑦, 𝑙𝑙 
(14) 

��𝑡𝑡𝑙𝑙ℎ𝑦𝑦𝑙𝑙� = 𝐸𝐸𝑦𝑦 
𝑙𝑙

   ∶   𝜎𝜎𝑦𝑦          ∀ 𝑦𝑦 
(15) 

2.6.3.3 Cost annualized monotonic model (for several years) 

The cost annualized monotonic model can be converted into a monotonic one by adding 
this new constraint: 

𝑥𝑥𝑗𝑗,𝑦𝑦+1 ≥ 𝑥𝑥𝑗𝑗𝑦𝑦     ∶  𝜀𝜀𝑗𝑗𝑦𝑦          ∀ 𝑗𝑗,𝑦𝑦 

 

(16) 

Now, reducing the overall quantity of a technology is not accepted, considering that this 
is a decision difficult to make. This model makes sense if the demand is increasing along 
the years. 

2.6.3.4 Overall cost model 

In this model, the investment cost is considered as a whole and it is not annualized. 
Demand is again represented as elastic: 
 

𝐷𝐷𝑙𝑙𝑦𝑦 = 𝐷𝐷𝑙𝑙𝑦𝑦′ − 𝑎𝑎𝑙𝑙𝑦𝑦𝑝𝑝𝑙𝑙𝑦𝑦 (17) 
 
The yearly cost expression for this model is: 

𝐶𝐶𝑦𝑦 = �𝛽𝛽𝑗𝑗′𝑥𝑥𝑗𝑗′𝛾𝛾𝑗𝑗𝑦𝑦
𝑗𝑗

+ �𝐵𝐵𝑗𝑗𝑦𝑦∗ 𝑑𝑑𝑥𝑥𝑗𝑗𝑦𝑦 
𝑗𝑗

+ �𝛿𝛿𝑗𝑗𝑡𝑡𝑙𝑙𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙
𝑗𝑗𝑙𝑙

 (18) 

The first term is used to represent stranded investment costs of pre-existent generation 
assets 𝑥𝑥𝑗𝑗′. Only these assets’ investment cost is annualized with a known value for each 
technology, 𝛽𝛽𝑗𝑗′. 𝛾𝛾𝑗𝑗𝑦𝑦 is 1 if the end of the plant life span has not yet been reached and 
hence y<=ls’(j), and is 0 otherwise. ls’ is the remaining life span for preexisting groups. 
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We will assume that ls’(j)<Y. For the sake of clarity, this term will be neglected in the 
remaining of the paper. The second and third term represent investment cost of newly 
built plants and production cost respectively. The variable 𝑑𝑑𝑥𝑥𝑗𝑗𝑦𝑦 is the investment done 
in year y (incremental value, not total value as used in the previous model). 𝐵𝐵𝑗𝑗𝑦𝑦∗  is the 
corrected overall investment cost, and will be explained in detail below. 
For residual value 𝑅𝑅𝑉𝑉𝑌𝑌, we will replicate year Y, but investment cost is now annualized, 
otherwise it makes no sense to accept that each year is equal to the next one, and 
unrealistic results will be obtained. So, the cost we will replicate will be �̂�𝐶𝑌𝑌 , a modified 
cost for year Y. g is the yearly growth rate and must satisfy g<d. The expression is the 
result of the infinite geometric series sum from year Y+1, discounted to year Y. 

�̂�𝐶𝑌𝑌 = �𝛽𝛽𝑗𝑗𝑌𝑌𝑥𝑥𝑗𝑗𝑌𝑌 
𝑗𝑗

+ �𝛿𝛿𝑗𝑗𝑌𝑌𝑡𝑡𝑙𝑙𝑞𝑞𝑗𝑗𝑌𝑌𝑙𝑙
𝑗𝑗𝑙𝑙

 
(19) 

𝑅𝑅𝑉𝑉𝑌𝑌 = �
1 + 𝑔𝑔
𝑑𝑑 − 𝑔𝑔

� �̂�𝐶𝑌𝑌 
(20) 

With the previous definitions, we can already compute Net Present Cost (NPC) 
discounted for year 1, for this overall model: 

 

𝑁𝑁𝑅𝑅𝐶𝐶 = ��
1

𝑟𝑟𝑦𝑦−1
𝐶𝐶𝑦𝑦�+ 

1
𝑟𝑟𝑌𝑌−1

𝑅𝑅𝑉𝑉𝑌𝑌

𝑦𝑦=𝑌𝑌

𝑦𝑦=1

 
(21) 

 
There is a key point in the previous formulation. If some investment is made and its life 
span finishes after year Y, we could be adding twice its investment cost for the last year. 
It would be included in the value of the overall investment cost 𝐵𝐵𝑗𝑗𝑦𝑦  (sometimes called 
overnight investment cost), and it also partially in the residual value. So, a corrected 
overall yearly cost 𝐵𝐵𝑗𝑗𝑦𝑦∗  is defined. It is equal to 𝐵𝐵𝑗𝑗𝑦𝑦 if y+ls(j)-1> Y and otherwise it is: 
 

𝐵𝐵𝑗𝑗𝑦𝑦∗ = 𝐵𝐵𝑗𝑗𝑦𝑦 − �
𝛽𝛽𝑗𝑗𝑌𝑌
𝑟𝑟𝑦𝑦𝑦𝑦−𝑦𝑦

𝑦𝑦𝑦𝑦=𝑦𝑦+𝑙𝑙𝑠𝑠(𝑗𝑗)−1

𝑦𝑦𝑦𝑦=𝑌𝑌+1

 (22) 

 
In this expression 𝛽𝛽𝑗𝑗,𝑦𝑦𝑦𝑦 is computed using (10) for year Y. The objective function for this 
model includes NPC and the term to represent elastic demand. Constraints include lower 
limit for production (24), upper limit for production (25), including utilization factor kj, 
generation-demand balance (26), and hydro production energy balance  being 𝐸𝐸𝑌𝑌 total 
hydro available energy (27) as in the previous model. Additionally, early retirements for 
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plants are forbidden (28). Constraint (29) represents the relationship between total 
cumulated capacity x and incremental yearly investment dx, taking into account plants 
life span. Dual variables are at the right of each constraint. 

𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝜔𝜔𝑗𝑗,𝑇𝑇𝑚𝑚𝜔𝜔𝑗𝑗,𝑞𝑞𝜔𝜔𝑗𝑗𝑙𝑙,𝑆𝑆𝑗𝑗𝑙𝑙    𝑁𝑁𝑅𝑅𝐶𝐶 −�
1

2𝑎𝑎𝑦𝑦𝑙𝑙
�𝐷𝐷𝑦𝑦𝑙𝑙′ − 𝐷𝐷𝑦𝑦𝑙𝑙�

2
𝑦𝑦=𝑌𝑌

𝑦𝑦=1

 
(23) 

s.t. 

0 ≤ 𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙     ∶   𝜌𝜌𝑗𝑗𝑦𝑦𝑙𝑙         ∀ 𝑗𝑗,𝑦𝑦, 𝑙𝑙 

 
(24) 

𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙 ≤ 𝑘𝑘𝑗𝑗𝑥𝑥𝑗𝑗𝑦𝑦     ∶   𝜇𝜇𝑗𝑗𝑦𝑦𝑙𝑙         ∀ 𝑗𝑗,𝑦𝑦, 𝑙𝑙 
(25) 

��𝑞𝑞𝑗𝑗𝑦𝑦𝑙𝑙� +  ℎ𝑦𝑦𝑙𝑙  = 𝐷𝐷𝑦𝑦𝑙𝑙
𝑗𝑗

        ∶  𝑝𝑝𝑦𝑦𝑙𝑙         ∀ 𝑦𝑦, 𝑙𝑙 
 

(26) 

��𝑡𝑡𝑙𝑙ℎ𝑦𝑦𝑙𝑙� = 𝐸𝐸𝑦𝑦 
𝑙𝑙

         ∶   𝜎𝜎𝑦𝑦          ∀ 𝑦𝑦 
(27) 

 𝑑𝑑𝑥𝑥𝑗𝑗𝑦𝑦 ≥ 0      ∶        𝜀𝜀𝑗𝑗𝑦𝑦        ∀ 𝑗𝑗,𝑦𝑦 
(28) 

𝑥𝑥𝑗𝑗𝑦𝑦 = 𝑥𝑥𝑗𝑗′𝛾𝛾𝑗𝑗𝑦𝑦 + � 𝑑𝑑𝑥𝑥𝑗𝑗,𝑦𝑦𝑦𝑦

𝑦𝑦𝑦𝑦=min (𝑦𝑦,𝑌𝑌)

𝑦𝑦𝑦𝑦=max (1,𝑦𝑦−𝑙𝑙𝑠𝑠(𝑗𝑗)+1)

         ∶  𝜆𝜆𝑗𝑗𝑦𝑦    

∀𝑦𝑦 | 1 ≤ 𝑦𝑦 ≤ �𝑌𝑌 + 𝑚𝑚𝑎𝑎𝑥𝑥𝑗𝑗<𝐽𝐽 𝑙𝑙𝑠𝑠(𝑗𝑗) − 1�  

∀𝑗𝑗 | 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽 − 1 

(29) 

 
Variable dx (incremental yearly investment) is defined from year 1 to year Y, that is the 
last one that is represented in detail. However, x is defined from year 1 to year Y+ls(j)-1. 
These variables are not defined for the last technology, j=J because it corresponds to 
non-served energy, and thus there is no associated investment cost.The main 
advantages of this model in comparison to the annualized one is that using overall 
investment costs and the free cash flow criterion, no annualization of investment cost is 
required, obtaining thus a decision not affected by the arbitrary decision of how cost is 
distributed among the years. 

2.6.3.5 Optimality criteria analysis 

In the appendix it is shown that when corporate tax is disregarded, as it has been 
considered for all the models presented herein, by minimizing NPC and under certain 
assumptions we are in fact computing the solution that produces NPV = 0. This is true 
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for the annualized model if the monotonicity constraint (16) is not active, and for the 
overall model when the following assumptions are considered: 
 

• the monotonicity constraint (28) is not active, 
• the system starts from scratch, in other words, overall investment is zero for all 
technologies in year 0 (green field planning), 
• and the solution for investment for the last year is the same than the one that is 
obtained for this year if it is solved separately using the annualized model using the 
French method for computing the annualized investment cost. 

2.6.4  Case study and Results 

2.6.4.1 Base case 

The case base represents a 30-year horizon, for a system with four available 
technologies: imported coal (CIMP), combined cycle gas turbine (CCGT), gas turbine 
(TGAS) and on-shore wind power (WIND). No hydro power is considered for this case. 
TABLE XV shows investment and production costs for these generation technologies. 
There are no previously existing plants in the system, those that are required to supply 
the demand in the first year are built from scratch. 
 

TABLE XV. DATA FOR BASE CASE 

  CIMP CCGT TGAS WIND 
Investment 

cost 
(yearly) 

€/MW/year 125240 50858 35600 90000 

Production 
cost 

€/MWh 34 52 75 0 

Life span years 30 25 25 25 
Utilization 

factor 
p.u. 1 1 1 0.25 

 
Demand is inelastic (although the model would allow a elastic one) and is divided into 
twenty blocks each year with uneven durations to represent a realistic load-duration 
curve. Demand level for year 1 ranges from 19 to 41 GW. Demand increases yearly with 
different rates for each year and each load block. Yearly demand increase rates vary 
between 1 and 1.8%, for the last year of the horizon they are close to 1%. Discount rate 
is set to 7%. Growth rate for years beyond the studied horizon is 1% and non-supply 
energy cost was set to 2000 €/MWh. 
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2.6.4.2 Results 

2.6.4.2.1 Comparison between annualized and overall model 

 
The base case was solved both with the annualized model (without and with the 
condition of monotonicity (16) for investment) and for the overall model. Fig 1 shows 
how investment in wind power is greater for the annualized one (same results are 
obtained without and with monotonicity) for the first years, slowly approaching to the 
same value, that is reached around year 15. Fig 2, Fig 3 and Fig 4 show the investment 
for the rest of technologies (thermal) for the three alternatives. There are small 
differences in intermediate years in the value of investments when the monotonicity 
constraint is included in the annualized model. On the other hand, investment values 
for year one are different for annualized and overall model, but they slowly converge to 
a similar value at the end of the time horizon.  
 
Cost recovery along the plants life span was checked for the investments done in the 
first year for the four technologies, finding that it is achieved for the annualized cost 
without monotonicity (as expected) but, surprisingly, also for the case with 
monotonicity. In the overall model, all technologies recover investment cost, except for 
CCGT that recovers everything except a small quantity below 0.2% of investment overall 
cost. 
In order to compare how investment cost is recovered in each situation, an equivalent 
yearly investment cost for each technology has been defined, being yearly income cost 
per MW minus yearly operation cost per MW.  
 

𝛽𝛽𝑒𝑒𝑞𝑞𝑗𝑗𝑦𝑦 = ��𝑡𝑡𝑙𝑙𝑞𝑞𝑗𝑗𝑦𝑦 �
𝑝𝑝𝑦𝑦𝑙𝑙
𝑡𝑡𝑙𝑙
𝑟𝑟𝑦𝑦−1 − 𝛿𝛿𝑗𝑗𝑦𝑦�� ∗

𝑙𝑙

1
𝑥𝑥𝑗𝑗𝑦𝑦

 

 

(30) 

In Fig 5 this parameter is shown for the annualized model with monotonicity. Differences 
with the annualized investment cost when is evenly distributed are not large, and this 
explains why cost is recovered despite of monotonicity. 
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Fig 1. Accumulated investment for each year in wind power. Base case. (Annualized model with and 
without monotonicity have the same value). 

 

Fig 2. Accumulated investment for each year in coal. Base case. 

 

Fig 3. Accumulated investment for each year in CCGT. Base case. 
 
The same parameter for the overall model is shown in Fig 6. It is interesting to see how 
on the one hand this value for the first year is over the annualized investment cost when 
it is evenly distributed. On the other hand, it is at the same value or below for the last 
years of the horizon. This means that in order to minimize the overall system cost, 
optimal investments do not correspond to annualized optimal investments unless this 
modified value is used for yearly investment cost, instead of the usual uniform 
annualized value (French method). 
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2.6.4.2.2 Effect of decreasing investment costs for wind power 

 

The objective of this alternative case is to check how the investment and its cost 
recovery depend on the evolution of investment cost. All the data are the same as in the 
base case, including investment cost for all the technologies except for wind power, 
which is represented considering a decrease of 20% of cost every ten years. Fig 7, Fig 8, 
Fig 9 and Fig 10 show the new values for investment. For thermal technologies, in the 
annualized cost model with monotonicity, investment is made only in the first year (1.9, 
7.3 and 6.3 GW for coal, CCGT and gas turbine respectively). Obviously, wind power 
investment increases for the last years with respect to the base case, decreasing for the 
other technologies, that besides, in the last years, are constant for the overall model and 
have small variations for the rest of technologies when the annualized model is used, 
except for gas turbines that share the demand supply with wind power for years 25 to 
30. CCGT and gas turbine plants that are built in the first year are closed in year 25, and 
in year 26 there is an additional demand that is covered also with gas turbines. This 
effect is not seen by the annualized model. Besides, both annualized model 
overestimate investment with respect to the overall model that includes investment 
cost in a more adequate way. 

 

Fig 4. Accumulated investment for each year in gas turbines (TGAS). Base case. 

 

 

Fig  5. Equivalent annualized investment cost for each technology for annualized case with monotonicity. Base case. 
Horizontal dotted lines represent the yearly uniform cost for the annualized case. 
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In this case, the total investment for year 30 is very different in the annualized and 
overall models for coal and CCGT. Moreover, cost recovery for the investments made in 
the first year, is again achieved for the annualized cost without and (surprisingly again) 
with monotonicity. In the overall model, all technologies recover investment cost, (wind 
even obtains a profit around 1% of investment cost) except for coal that only recovers 
65% of investment cost.Cost recovery distribution  is analyzed in Fig 11. Now the 
equivalent yearly investment cost, is very significant in the first years for all thermal 
technologies. The increase of wind power capacity for the last year makes prices 
decrease and thus recovery must be done during the first years. The discrepancies are 
related to the large difference between the investment decided for the annualized case 
without monotony (0 GW) and the overall model (4 GW).  

 

 
Fig 6. Equivalent annualized investment cost for each technology for overall case. Base case. Horizontal dotted lines represent the 
yearly uniform cost for the annualized case. 

 

Fig  7. Accumulated investment for each year in wind power. Case with decreasing cost for wind power. 

2.6.5 Conclusions 

 
Two different models to compute generation capacity expansion planning by minimizing 
net present cost have been presented. The former uses an annualized investment cost 
for each year, while the later uses overall investment cost and includes a residual value. 
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In some situations, these models obtain the decisions for capacity expansion that lead 
to a net present value of zero, being interesting to determine the profitability threshold 
where a generation company breaks even. The conditions that lead to cost recovery in 
both models have been analyzed. The use of the overall model allows to explore the 
best path for cost recovery along the years, while annualizing the investment cost means 
making this decisions exogenously. It also uses a more realistic representation of plants 
closures. 
 
A basic case example including both thermal and renewable technologies has been used 
to compare both models. For the case with investment cost uniform along time, cost 
recovery has been obtained for both models. Nevertheless, when decreasing 
investment cost has been considered for wind power, cost recovery has only been 
achieved for all technologies for the annualized model. In the case of the overall model, 
coal only got a partial cost recovery. The results suggest that uniform annualization 
overestimates optimal investment and may not be the most adequate option in a 
decreasing investment-cost context. 
 

 
Fig 8. Accumulated investment for each year in coal (CIMP). Case with decreasing cost for wind power. 

 
Fig 9. Accumulated investment for each year in coal in CCGT. Case with decreasing cost for wind power. 
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Fig 10. Accumulated investment for each year in coal in gas turbines (TGAS). Case with decreasing cost for wind power. 

An adequate representation of net present value, provides useful additional information 
for analyzing generation investments and cost recovery, especially in situations with 
decreasing long-term investment cost, as is the case of most of renewable technologies. 
Further research should deal with the inclusion of corporate tax in the computation of 
net present value, which is out of the scope of this work. Other improvements may 
include the analysis of the effect of the value of WACC on demand when it is elastic and 
the consideration of uncertainty in renewable production availability. The models 
presented herein could also be extended to analyze transmission or storage expansion. 
 

 
Fig 11. Equivalent annualized investment cost for each technology for overall case. Case with decreasing cost for wind power. 

Horizontal dotted lines represent the yearly uniform cost for the annualized case. 

 
 

 
 
 

 

3. Integration of short- and long-term uncertainties in long-
term models 

Transmission Expansion Planning (TEP) and Generation Expansion Planning (GEP) are 
becoming more and more complex with the uncertainty introduced by the growing 
presence of renewable energy resources and other technological advances, along with 
constant uncertainties such as fuel prices and load demand. 

The goal of TEP is to provide safe and cost-effective electricity services to society. It 
intends to optimize power systems operation by minimizing costs, and therefore, 
maximizing efficiency. This optimization can be limited through  different restrictions, 
such as environmental or government mandated [143]. With all previous considerations, 
TEP defines when, where and how many new lines should be installed in the network to 
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ensure a sufficient level of energy supply to customers, taking into account a number of 
uncertainties, while minimizing investment, operation, and interruption costs [2]. TEP 
uses forecasting, candidate identification, optimization/cost-benefit analysis, reliability 
assessment, and security assessment [144]. TEP uses forecasting, candidate 
identification, optimization/cost-benefit analysis, reliability assessment, and security 
assessment [145]. TEP attempts to satisfy demand while at the minimum cost 
operationally. 

GEP relates to the investment on energy production as it attempts to expand the current 
power system by determining the size, place, technology, and time of new plants. GEP 
must satisfy reliability criteria and meet the increasing future demand in order to be 
successful [144]. It aims to minimize costs, both operational and investment-wise, to 
create a power system with the most efficient technologies considering the near future. 
GEP aids with investment decisions as it attempts to reduce costs of expansion. 

The penetration of renewable energy sources has been continuously increasing in 
modern day power systems and are likely to continue to do so. Renewables have a major 
impact on the investment and expansion decisions that are made. While leading to CO2 
reductions, renewable energy (RE) sources are often intermittent, such as wind, and 
therefore represent a challenge for power systems. Their power output is uncertain and 
strongly affects short-term operation of the system. Long-term models that disregard 
short-term uncertainties due to the lack of proper representation of short-term 
behavior, might be more prone to commit planning mistakes. STEXEM is planning to 
introduce this short-term behavior into strategic expansion models. By doing so, we will 
be able to provide further insights about the game-theoretic consequences of greater 
RE penetration coupled with smart-grid technologies such as energy storage. Such 
interactions are increasingly important and can have unexpected results that are only 
beginning to be explored in the literature. However, the literature generally does not 
address investment in wind and energy storage, which is why our approach would be 
novel in terms of providing policy insights. 

Uncertainty clouds the planning and modeling of GEP and TEP programs. Uncertainty is 
a state in which it is not possible to describe this exact moment, nor the future outcome. 
This uncertainty within expansion planning can be in the forms of demand growth, 
weather occurrences, and changes in fuel prices, along with many others. Uncertainty 
can be broken down into two types: aleatory and epistemic. Aleatory uncertainty has a 
“natural variability” in relation to a certain process [143]. For example, humans are 
naturally unpredictable in their behavior and choices. It is very difficult to manage or 
account for this uncertainty, if not impossible, in the same way that one cannot predict 
when and where an earthquake will occur in the future. Epistemic uncertainty results 
from imperfect knowledge, such as failure rates or a competitive market. Investment 
modeling can remove this uncertainty, whereas aleatory uncertainty can only be 
described by probabilities [146]. The impact of these uncertainties is known as risk, 
which can be quantified through cost-benefit analysis. Risk has the potential to create 



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          111 

 

consequences for expansion planning, which are usually negative. Uncertainty and risk 
make it more complex to optimize system planning for expansion. 

GEP and TEP consider many similar uncertainties when attempting to optimize systems. 
For example, both rely on the prices of energy, reserves and regulation, which are 
uncertain. Also, fuel prices and availability affect both markets, as well as energy 
demand. Many regulations also affect GEP and TEP when optimizing investment 
decisions [147]. Common uncertainties allow for the co-optimization of energy systems 
in modeling. 

Some uncertainties more specific to GEP include price volatility, demand evolution, 
reliability of generation units, investment and operation costs. Similarly, there is 
uncertainty with fuel prices, investment and maintenance costs and electricity prices. 
These influence generation planning in the way that it relates to investment on energy 
production, where investors must be aware of what will happen to prices, demand, and 
costs in the short- and long-term future [148]. Planners must also take into account 
these uncertainties in order to maximize the investment that they could potentially 
receive from these investors, as well as maximize the profits. 

Uncertainty in TEP influences how to optimize power systems in the way that 
transmission planning accounts for “whether, where, when, and what types of 
transmission facilities to build in terms of minimizing costs and maximizing net economic 
benefits” [149]. Uncertainty can negatively affect making these decisions, as it becomes 
more challenging to optimize when dealing with multiple unknown or unknowable 
factors. This uncertainty comes in various forms, such as price, power system modeling, 
input data, and load. Some common uncertainties are: 

• load uncertainty 
• availability of supplies, such as generators and system facilities 
• installation and closure of transmission facilities 
• market rules and government policy, such as carbon tax [149] 
• generation expansion and closure [145], [150] 

Most importantly, however, uncertainty can be broken down by time. The timing affects 
the severity of uncertainty as well as the modeling structure. Short, medium, and long-
term uncertainties can also affect decisions in regard to the scope. Short-term 
uncertainties, between hours and months, consist of hourly demand, equipment 
availability, wind production, and spot fuel prices, among others. Long-term uncertainty 
could be new technologies or smart grids, for example. These are much harder to 
account for, and decisions create a much larger impact while providing little detail. 
Somewhere between months and decades are the medium-term uncertainties, such as 
demand growth, generation expansion, supply contracts, or the evolution of current 
technology. These are taken into account through modeling approaches that produce 
optimized investment decisions. 
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STEXEM plans to introduce TEP and GEP short-term uncertainties into optimization 
systems in order to improve the investment decision process by taking into account both 
long- and short-term uncertainties. The programming tools utilized take uncertainties 
from both TEP and GEP, as well as overlapping uncertainties. 

3.1 General Overview 

TEP and GEP can be grouped together when creating optimization models, known as co-
optimization. They both use large-scale highly constrained mixed-integer nonlinear 
programming, and are multi-objective optimization problems. Optimization programs 
for GEP and TEP can be used to account for uncertainties and to find the optimal 
investment and operation solutions. The main methodologies for treating uncertainty in 
GEPTEP problems are stochastic programming, adaptive programming, and robust 
optimization.  The structure of uncertainty can be useful when comparing modeling 
approaches. It can be broken down as known, unknown, and unknowable uncertainties 
[146]. Known uncertainties, such as yearly demand growth, can be modeled through 
stochastic programming. These are random uncertainties that mostly come from 
historical data, which means the uncertainty can be assigned a probability. Unknown 
uncertainties are difficult to assign probabilities, and thus are modeled by sets bounding 
outcome. These can also be modeled through fuzzy sets or robust optimization, which 
are less structured models. Unknowable uncertainties are long-term and usually cannot 
even be identified in advance. These can be optimized with robust or flexibility. 

There are multiple programs which can optimize decisions for TEP and GEP under 
uncertainty. Stochastic programming limits the number of scenarios and uses 
probability-defined uncertainties in order to create parameters. It attempts to minimize 
overall cost while maximizing profits [151]. Chance-constrained approaches are useful 
in solving TEP, as it has a predefined level as it solves using probabilities. Stochastic 
optimization systems use two decision stages: the here-and-now decisions and wait-
and-see decisions. Here-and-now decisions are commitments made before resolving 
long-run uncertainties. Wait-and-see decisions are made after the scenario has 
occurred, also known as recourse decisions [149]. 

Adaptive programming is very similar to stochastic, where it minimizes cost and 
maximizes economic benefits. However, the “here and now” decisions of stochastic are 
transformed into core design investments, while “wait and see” decisions become 
scenario specific investments  [152]. Also, in adaptation the scenario specific 
capacity investments are not saved over time. Adaptation also utilizes a number of the 
same uncertainties as stochastic programming. 

Robust optimization can be used for co-optimized expansion planning, as it takes 
different sources of uncertainty and objective functions into account. Robust 
optimization attempts to minimize the worst-case cost and regret. Uncertainty sets 
must be utilized in order to “characterize possible realizations of the uncertain 
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parameter” [151]. It provides conservative decisions because it minimizes operational 
costs and considers the worst-case scenario given the uncertainty [151]. Robust 
optimization does not need probabilities, rather probabilistic sets, and its goal is to 
minimize the maximum risk overall. 

3.2 Stochastic Programming 

Stochastic programming allows for decisions to be made easily in regard to the best 
investment and the optimal investment time. Stochastic programming allows the 
decision maker to consider and compare multiple possibilities. The two-stage process 
has proved to be very successful with transmission expansion. The three types of 
mathematical modeling to solve these programs are recourse, deterministic, and 
probability-constrained. The first issue is the decision time framework, where “here and 
now” must be separated from “wait and see” decisions. Stochastic programming solves 
a limited number of scenarios that follow a certain distribution by using probabilities 
[151]. It attempts to find the best investment decision given that many different futures 
are possible, while taking into account several uncertainties, including that future 
energy standards are unknown [153]. It utilizes scenario trees with probability 
distributions to account for uncertainty. 

The uncertain parameters taken into account in stochastic programming are either 
limited by the number of scenarios or assumed to follow a certain distribution. The 
objective is either to maximize expected profit without regard to risk, or to maximize 
profit while limiting the risk. A scenario tree can help to describe each variable with its 
assigned probability [147]. When many scenarios and uncertainties are present, a 
decomposition method can help to break down the problem within mixed integer 
programming. Bender’s Decomposition model separates the problem into the 
investment and operation problems, naming them the master and slave, respectively. 
This method is most useful when the number of variables linking the two stages of the 
stochastic program is small, or when the master problem and subproblem are 
fundamentally different [154]. The early version of the prototype in this project does 
not require decomposition as it only takes a few variables into account, however for 
future implementation of the Spanish or European case a decomposition could be 
necessary. 

In Table 16, general short-term and long-term uncertainties are given regarding 
stochastic programming. The main uncertainties taken into account are the short-term 
uncertainties, such as wind power generation and weather conditions. This is because a 
probability can be assigned to these uncertainties, usually based on past historical data. 
However, long-term uncertainties are also taken into account, as they cannot be ignored 
when attempting to find the optimal solution to expansion planning. Technological 
advancements, including the introduction of renewable energy options, are long-term 
uncertainties that must be faced. Renewables are bound to enter the transmission and 
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generation expansion plans in the future. Also, load demand is short-term, while load 
growth in long-term. This is because demand focuses on the near future of power 
storage, while load growth is the positive or negative expansion of power required by a 
facility further into the future. These are the main uncertainties taken into account 
within stochastic programming as it chooses the optimal investment decision. 

 
Table 16: Short-term and long-term uncertainties of stochastic programming. 

Short-Term Uncertainties within SP Long-Term Uncertainties within SP 

Wind power generation [153] Natural Disasters [147] 

Fuel prices [147] Technological advancements, renewables [147] 

Weather conditions [155] Regulatory issues/policy changes [147][153] 

Load demand [155] Load growth [148] 

 Economic growth [155] 

3.3 Adaptive Programming 

Adaptive programming can be described as a form of stochastic programming. This 
means that it is very similar to stochastic programming, as they are often combined, but 
it has its own variations. Adaptive and stochastic programming both are recourse-based 
mathematical programs that aim to solve co-optimized scenarios while considering a 
number of uncertainties. However, stochastic programming solves a set of core 
investments starting at t=1, but it does not define later time periods until later stages 
are realized [152]. In adaptation, a single plan is created for all time periods, and the 
plan is re-evaluated in the future and updated. Also, stochastic “here and now” decisions 
are adaptive investments into the core design, and “wait and see” stochastic decisions 
become scenario specific investments in adaptation. Scenario specific investments have 
no memory through time, as “wait and see” decisions are evaluated at each time step 
within stochastic programming. In adaptation, core investments are defined for all time 
periods at once. Unlike stochastic programming, adaptation also has a capacity update 
equation for both the core and scenarios [152]. Adaptation is similar to stochastic 
programming, but it faces a number of variations in formulation and decision making. 

In Table 17, it becomes very clear that adaptation is very similar to stochastic 
programming. Many of the uncertainties considered in stochastic programming are also 
considered in adaptation. However, the formulation varies slightly, as mentioned above. 
Wind and solar energy uncertainty appears in all of the types of programming, as it is 
unavoidable considering the growth of renewable energies as a power source around 
the globe. Short-term weather conditions must be considered because renewables will 
not function as well, if at all, if there is no wind one week or it is a particularly cloudy 
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month. Taking many factors and uncertainties into account allows the program to select 
a much safer and better decision regarding TEP and GEP plans. 

Table 17: Difference in uncertainties by time relating to adaptive programming. 

Short-Term Uncertainties within AP Long-Term Uncertainties within AP 

Wind/Solar power [145] Introduction of renewable energies [147] 

Load demand [155] Technological advancements [147] 

Fuel price [148] Policy changes [153] 

Market changes [148] Economic growth [155] 

3.4 Robust Optimization 

Robust Optimization has fundamental differences from Adaptive and Stochastic 
programming. It utilizes a probability distribution within a confidence set to assess 
uncertainties. It fits best in the case that enough data is not available for the 
uncertainties to solve in a way such as stochastic programming. Robust Optimization 
works by using the past historical data available regarding uncertain conditions. It 
models through sets, where the data and scenario are bounded within certain limits. 
This optimization method considers the worst-case scenario to achieve a cost-effective 
solution. It has been applied to wind, price, power generation, and load uncertainty 
[156]. Robust Optimization finds the best possible choice to avoid the worst scenario 
and risks. 

Robust Optimization addresses some of the issues that arise from stochastic 
programming. For example, it uses probability distribution sets with an infinite number 
of scenarios. This is in contrast to stochastic programming, which uses probability 
distribution functions to analyze a number of uncertainties. Robust Optimization can 
assess numerous scenarios more easily than stochastic, which requires specific data, as 
well as decomposition methods sometimes, to break down the large number of 
uncertainties. 

In Table 18, the main uncertainties for Robust Optimization are proposed. Many are 
similar to Table 16 and Table 17, as they consider the same problem usually regarding 
transmission and generation expansion planning.  However, the case studies sometimes 
favor some uncertainties over others when creating a new program.  Human demand 
and investment behavior tend to appear more in robust optimization. Human demand 
and investment uncertainty refer to the unpredictable nature of consumers.  The term 
‘environmental factors’ also appears many times, which refers to wind generation 
power, available thermal energy, or solar power.   This reflects on the fact that weather 
is unpredictable and can affect the power generation if renewable energy systems are 
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introduced. Many of the other uncertainties have been mentioned in regard to 
stochastic or adaptive programming. 

Table 18: Difference in uncertainties by time relating to robust optimization. 

Short-Term Uncertainties within RO Long-Term Uncertainties within RO 

Wind/solar generation [156] Technological advancements [157] 

Load demand [156][157] Natural Disasters [157] 

Human demand variations [157] Policy changes [157] 

Investment behavior [146] Load growth [157] 

3.5 Conclusions 

The overview of generation and transmission expansion planning has been discussed, as 
well as their differences and meanings. Co-optimization of these two is starting to be 
introduced when creating programs to make optimized decisions for future 
investments. These expansion plans face uncertainty regarding the future, because not 
everything can be known for certain. There are uncertainties specific to GEP, TEP, and 
also uncertainties that cover co-optimization. Adding these factors to the programming 
formulations accounts for many of the risks and works to reduce it when choosing the 
best decision. Stochastic programming, adaptive programming, and robust optimization 
all aim to choose the optimal solution for the given scenario within expansion planning. 
These programs vary from one another slightly and sometimes produce different 
solutions regarding the same case. STEXEM has created its own programs to consider 
long-term and short-term uncertainties to solve cases regarding the co-optimization of 
generation and transmission expansion planning. 
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5. Annex 

This annex describes the above references in detail, citing the overall topics and main 
points for each document individually. 

5.1 Transmission expansion planning: a review 

Title Author Subject Main Points 

Transmission 
expansion planning: a 
review 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Niharika, Verma, 
Mukherjee 

TEP: 
 
--Approaches 
 
--Planning models 
 
--Solution methods 
 
--Optimization tools 

TEP can be broken 
down into static and 
dynamic planning.  
Dynamic takes into 
account size, 
placement, and time 
consideration.  TEP can 
be modeled based on 
different criteria, like 
transportation, DC 
power flow, AC power 
flow, hybrid, or 
disjunctive models.  
Mathematical 
optimization methods 
determines an optimum 
expansion plan.  The 
plan should be 
technically, financially, 
and environmentally 
verified.  Heuristic 
methods optimize step-
by-step, sometimes also 
using sensitivity 
analysis.  Some 
programming 
languages to help solve 
include Fortran, C, 
C++, Python, Java, 
MATLAB, GAMS, 
LINGO, AMPLY, or 
AIMMS. 
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5.2 Robust Transmission Expansion Planning Representing Long- and 
Short-Term Uncertainty 

Title Author Subject Main Points 

Robust Transmission 
Expansion Planning 
Representing Long- 
and Short-Term 
Uncertainty 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zhang, Conejo Difference b/w short 
and long-term 
uncertainties 
 
Problem formulation 
and model 
 
Benders’ 
Decomposition 

Short term TEP 
uncertainties include 
daily variation of 
demand and power 
production.  Long-term 
uncertainties include 
actual peak demand 
and available 
generation capacity in 
10-20 years from now.  
Short term 
uncertainties are 
represented by 
scenarios, while long-
term are represented by 
robust sets.  An 
example of Benders’ 
Decomposition is also 
given and explained 
thoroughly. A 118 bus 
case study is given 
complete with tables 
and charts as well.  
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5.3 Flexible Transmission Expansion Planning With Uncertainties in an 
Electricity Market 

Title Author Subject Main Points 

Flexible Transmission 
Expansion Planning 
With Uncertainties in 
an Electricity Market 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zhao, Dong, Lindsay, 
Wong 

Uncertainties in 
deregulated market 
 
Stakeholders desires 
 
TEP solving method 
and formulation 
 
14-bus system test 

Some uncertainties 
listed are load forecast, 
availability of system 
facilities, 
installation/closure of 
facilities, fuel 
availability and cost, 
energy at risk, market 
rules, government 
policies, and expected 
unserved energy cost.  
TEP is modeled 
through a mixed integer 
nonlinear programming 
method.  Another 
method and 
formulation is 
proposed, and has been 
tested against a 14-bus 
system.  Market 
deregulation 
fundamentally changes 
TEP and creates more 
uncertainties.  The new 
method created uses 
adaptation costs and 
scenarios to generate 
more flexible decisions.  
This proposal uses a 
multiobjective 
optimization method to 
also optimize 
conflicting planning 
objectives. 
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5.4 A Framework for Transmission Expansion Planning 

Title Author Subject Main Points 

A Framework for 
Transmission 
Expansion Planning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Velasquez, Watts, 
Rudnick, Bustos 

Uncertainties 
 
--Aleatory vs Epistemic 
 
--Uncertainty vs Risk 
 
--KuU uncertainties 
 
--Short, medium, long-
term 
 
--Sources 
 
Optimization 
approaches 

Aleatory is a a natural 
variability inherent to a 
particular process, such 
as hourly wind speed, 
human behavioral 
variability, and 
earthquake 
incidents,which cannot 
always be represented 
by a probability.  
Epistemic uncertainty 
is produced by 
imperfect knowledge, 
such as the model to 
describe competition in 
electricity markets, 
generation expansion, 
and failure rates for 
new facilities.  Known 
uncertainties can be 
represented by a 
probability, which can 
be modeled through 
stochastic 
programming.  
Unknown uncertainties 
use bounded sets, such 
as with robust 
optimization.  
Unknowable 
uncertainties are events 
that can’t be identified 
in advance.  There is 
much more important 
information within this 
paper as well. 
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5.5 Decision Making under Uncertainty in Electricity Markets 

Title Author Subject Main Points 

Decision Making under 
Uncertainty in 
Electricity Markets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Barroso, Conejo Stochastic 
programming for 
uncertainties 
 
Main sources of 
uncertainty 

Main sources of 
uncertainty are: prices 
of energy, reserves and 
regulation, fuel prices, 
fuel availability, energy 
demand, and regulatory 
issues.  For decision 
making under 
uncertainty, the issues 
to address are the 
decision time 
framework, 
maximizing expected 
profit, and maximizing 
expected profit limiting 
the volatility (minimize 
risk).  Stochastic 
programming has 
recently been using 
decomposition methods 
to overcome the “curse 
of dimensionality”, 
when the number of 
scenarios becomes too 
large and the problem 
becomes so complex 
that it must be broken 
down to solve faster. 
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5.6 Comprehensive Review of generation and transmission expansion 
planning 

Title Author Subject Main Points 

Comprehensive Review 
of generation and 
transmission expansion 
planning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hemmati, Hooshmand, 
Khodabakhsian 

Differences between 
GEP and TEP 
 
TEP and GEP 
formulation overview 
 
Resources for different, 
specific optimization 
models 
 
adv/disadv of 
mathematical and 
heuristic models 
 
Uncertainties in TEP, 
GEP 

GEP relates to the 
investment on energy 
production.  GEP 
determines size, place, 
technology and the 
time of installing new 
plants to satisfy 
forecasted load.  GEP-
specific uncertainties 
include price volatility, 
demand evolution, 
reliability of generation 
units, investment and 
operation costs.  TEP 
defines when, where, 
and how many new 
lines should be 
installed to provide and 
adequate level of 
energy to customers.  
TEP takes into account 
load growth, forecasted 
demand, and more 
while minimizing 
investment, operation, 
and interruption costs.  
Uncertainties in 6.1-6.2 
could be useful in 
charts for paper. 
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5.7 Adaptive Transmission Planning 

Title Author Subject Main Points 

Adaptive Transmission 
Planning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hobbs, Xu, Ho, 
Donohoo, Kasina, 
Ouyang, Park, Eto, 
Satyal 

Intro to uncertainty in 
future 
 
Intro to TEP and 
considerations 
 
Short vs Long term 
uncertainties 
 
Existing optimization 
methods 
 
Stochastic 
programming 
 
 

The future is highly 
unpredictable with the 
technological 
advancements we are 
seeing now.  
Investments need to 
take into account many 
short term uncertainties 
and be able to consider 
many possible 
conditions.  For the 
long term, the 
investment must be 
robust, considering the 
policy, technological, 
and economic changes 
that can occur.  
Adaptability is also 
very important in 
regards to long term 
uncertainties.  
Stochastic 
programming 
demonstrates the 
difference between here 
and now decisions and 
wait and see decisions. 
Chance nodes describe 
possible scenarios, 
while decision nodes 
represent the proposed 
solutions.  The example 
of JHSMINE is also 
given and explained in 
detail. 
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5.8 Network Planning in Unbundled Power Systems 

Title Author Subject Main Points 

Network Planning in 
Unbundled Power 
Systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Buygi, Shanechi, 
Balzer, Shahidehpour, 
Pariz 

Random vs nonrandom 
uncertainties 
 
Model overview 
 
Fuzzy Index, risk 
assessment 
 
 

Random uncertainties 
are deviations from 
parameters that are 
repeatable and  have a 
known probability 
distribution.  Non-
random uncertainties 
are evolution of 
parameters that are 
non-repeatable, and 
their statistics cannot 
be found from past 
historical data.  
Modelling random 
uncertainties considers 
reliability, flexibility, 
transmission expansion 
cost, and environmental 
impacts.  Fuzzy 
numbers are 
introduced, as well as 
intervals and 
appropriateness 
indexes.  This is in 
regards to risk 
assessment and 
minimax regret.   
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5.9 Data-Driven Stochastic Transmission Expansion Planning 

Title Author Subject Main Points 

Data-Driven Stochastic 
Transmission 
Expansion Planning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bagheri, Wang, Zhao Stochastic 
programming with 
decomposition methods 
(Bender’s, column-and-
constraint generation 
methods) 
 
Robust optimization 

The objective of 
stochastic 
programming is to 
minimize the total 
expected cost or to 
maximize the expected 
profit or social welfare 
corresponding to the 
generated scenarios or 
assumed distribution.  
Robust optimization 
attempts to minimize 
the worst-case cost and 
the worst-case regret.  
An in-depth novel 
decomposition method 
is proposed using a 
stochastic program 
using historical data.  
The proposed method 
is tested with a 6- and 
18-bus system 
considering a 20 year 
horizon.   
 

 

 

 
  



Final report: "Task 1: Uncertainty integration and representation of time horizon for 
long-term models"  

 

Dec 2020          141 

 

5.10 A Comparison of Stochastic and Adaptation Programming 
Methods for Long Term Generation and Transmission Co-optimization 
under Uncertainty 

Title Author Subject Main Points 

A Comparison of 
Stochastic and 
Adaptation 
Programming Methods 
for Long Term 
Generation 
and Transmission Co-
optimization under 
Uncertainty 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Patrick Maloney, 
Oluwaseyi Olatujoye, 
Ali Jahanbani 
Ardakani, Diego 
Mej ́ıa-Giraldo, James 
McCalley 

Adaptation and 
stochastic 
programming methods 
 
Differences in 
formulation and 
structure 
 
Case study 

Stochastic 
programming models 
have similarly 
structured first and later 
stage decisions.  
Adaptation selects the 
minimum maximum 
adaptation cost.  It is 
also possible to 
integrate adaptation 
costs into stochastic 
programming.  
Stochastic is usually 
represented by scenario 
trees regarding capacity 
investments, while 
adaptation depicts core 
investments.  The 
objective functions of 
both are structurally 
similar.  Adaptation 
solves a set of core 
investments through all 
time.  Stochastic 
programming tells the 
planner the optimal set 
of investments at a 
particular stage.  
Stochastic here and 
now decisions become 
investments in the core 
design, and wait and 
see decisions are the 
adaptive scenario 
specific investments. 
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5.11 Long Term Planning Model Value of Stochastic Solution and 
Expected Value of Perfect Information Calculations with Uncertain Wind 
Parameters 

Title Author Subject Main Points 

Long Term Planning 
Model Value of 
Stochastic Solution and 
Expected Value of 
Perfect Information 
Calculations with 
Uncertain Wind 
Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Patrick Maloney, James 
McCalley 

Wind uncertainty 
 
Stochastic 
programming for wind 
uncertainty 
 
Solving for expected 
value 
 
Case study 

The most frequently 
used uncertainty 
regarding wind is the 
variability of wind 
power output.  Wind 
generation parameters 
that are uncertain 
include, build costs, 
variable operations and 
maintenance (VOM) 
costs, fixed operations 
and maintenance 
(FOM) costs, 
capacity factor, 
capacity credit, 
variability, construction 
lead 
times, and renewable 
portfolio policies.  
Load growth is a 
parameter more 
traditionally studied in 
uncertainty analysis 
and more directly 
affects most investment 
and operational 
decisions. This paper is 
mostly a case study and 
giving formulas to 
solve stochastic 
programming with 
data.  There is not 
much overview of the 
topic, but the formulas 
seem useful for 
programming. 
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5.12 Security Constrained Transmission Expansion Planning by 
Accelerated Benders Decomposition 

Title Author Subject Main Points 

Security Constrained 
Transmission 
Expansion Planning by 
Accelerated Benders 
Decomposition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Huang, Dinavahi Stochastic 
programming 
 
Benders 
cuts/decomposition 
 
 

Valid inequality, 
multicut strategy, and 
optimal precondition 
variations to the classic 
benders decomposition 
are introduced and 
explained.  Three case 
studies are provided 
with varying numbers 
of bus systems.  This 
paper almost 
completely focuses on 
Benders 
decomposition, which 
is not valuable if we do 
not use this method in 
our research.  However, 
it was mentioned in one 
of the paragraphs 
regarding the 
decomposition method 
in stochastic 
programming.   
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5.13 Co-optimization of electricity transmission and generation 
resources for planning and policy analysis: review of concepts and 
modeling approaches 

Title Author Subject Main Points 

Co-optimization of 
electricity transmission 
and generation 
resources for planning 
and policy analysis: 
review of concepts and 
modeling approaches 
 
 
 
 
 
 
 
 
 
 

Krishnan, Ho, Hobbs, 
Liu, McCalley, 
Shahidehpour, Zheng 
 

Background and 
history of co-
optimization and its 
importance 
 
Modeling approaches 
for co-optimization 
 
Chart of existing 
models  
 
AC/DC power flow 
models 
 
Short and long term 
uncertainties 
 
 

Co-optimized solutions 
create less expensive 
solutions than 
decoupled optimization 
solns. Many modeling 
choices are also 
described, including 
inter-temporal 
constraints, time steps, 
storage technologies 
and demand response, 
geographical coverage, 
salvage value, 
equilibrium, and 
extended simulation.  It 
also mentions that it is 
best to have a long 
simulation time in a 
model.  It also gives 
pros and cons of time 
step choices, but this 
may or may not be 
valuable.  Long run 
uncertainties given are 
economic growth, 
technological 
advancements, and 
regulatory 
developments for 
stochastic 
programming.  There is 
a lot more said in 4.4.1 
regarding stochastic 
programming and 
uncertainties. 
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5.14 Robust Transmission and Energy Storage Expansion Planning in 
Wind Farm-Integrated Power Systems Considering Transmission 
Switching 

Title Author Subject Main Points 

Robust Transmission 
and Energy Storage 
Expansion Planning in 
Wind Farm-Integrated 
Power Systems 
Considering 
Transmission 
Switching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dehghan, Amjady Stochastic model of 
TEP 
 
Uncertainty Handling 
 
Stochastic/Deterministic 
and Robust 
formulations 
 
Test systems  

This paper creates 
robust and 
deterministic models 
for co-optimization.  It 
introduces uncertainty 
such as wind power 
and load demand.  The 
robust model 
minimizes regret and 
maximizes output.  It 
also uses a 
decomposition 
algorithm to solve.  It 
proves that increasing 
the budget of 
uncertainty creates 
more conservative 
expansion plans in the 
end.  Additionally, the 
bus-system test showed 
that topology 
optimization is 
effective at reducing 
total costs of expansion 
and operations.  The 
formulations proposed 
in this paper could 
prove to be beneficial 
in creating new 
programs of co-
optimization as well. 
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5.15 Robust Transmission Network Expansion Planning with Uncertain 
Renewable Generation and Loads 

Title Author Subject Main Points 

Robust Transmission 
Network Expansion 
Planning with 
Uncertain Renewable 
Generation and Loads 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jabr Robust optimization 
 
Benders 
Decomposition 
 
TNEP without 
uncertainty 
 
TNEP with load and 
renewable generation 
uncertainty 
 
 

Robust optimization 
minimizes the 
maximum regret 
possible of the choices 
and risks.  TNEP with 
uncertainty takes into 
account renewable 
power generation and 
load demand, 
represented by 
uncertainty sets.  
Benders decomposition 
creates a master 
problem and slave 
problems to break 
down complex 
algorithms to solve 
faster.  The BD type 
algorithm gives a plan 
that works for all 
realizations of the 
uncertainty, but it could 
fall out of the bounds 
of the uncertainty set.  
An uncertainty budget 
is also helpful with this 
modeling method and 
parameters. 
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